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要　旨

著者らは円偏光赤外線を用いた二色性の分光により、光学活性分子の測定と解析を行っ
てきた。これまで、アルコール類の分子の場合には、無極性あるいは極性の弱い溶媒中に
希釈することにより、分子間水素結合を遮断したスペクトルを観測でき、溶液状態での分
子構造の研究にはほとんど情報をもたらさないと信じられてきたOH変角振動が振動円偏
光二色性（VCD）スペクトルには強い信号となって現れること、その信号の強度や符号
が振動モードの観点から解釈できる可能性のあることを示してきた。生体分子の系に振動
分光の研究を応用する場合、赤外分光とともにそれに相補的なRaman分光法が有用であ
ることは、多くの研究例によって明らかである。光学活性分子の振動円偏光二色性分光で
はROAと呼ばれる分光法がVCDに相補的な分光法ということになる。著者らの研究室で
は、本年度にこのROA分光装置を導入することになった。そこでこの際、Raman分光法
の一般的な原理とROAの理論の概観を行い、導入したROA分光装置でどの程度のスペク
トルが測定できるかを検討し、VCDとの比較を行うことにした。この論文はこれらの測
定実験の予備的な結果を報告し、将来への理論あるいは新しいモデル構築の基礎となるも
のとして執筆した。

ABSTRACT

We have carried over experimental measurements and analyses of optically active mole-
cules by dichroism spectroscopy with circularly polarized infrared light. We discovered the
OH bending modes of alcoholic molecules give fairly strong VCD（vibrational circular
dichroism）signals when the molecules are dissolved in nonpolar solvent or in solvent of
weak polarity where intermolecular hydrogen bonding is shut off. The OH bending infrared
band has been believed to be of low value in the study of molecular structure in liquid and
in solution because of its weak absorption intensity. We have pointed out that the intensi-
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ties and signs of VCD signals including the OH bending band can be understood in terms of
local vibrational modes and their relative arrangements, which seems to be of potential use
not only for analysis of the spectrum but also for prediction of the spectrum of new mole-
cule. It has been recognized through numerous researches that Raman spectroscopy com-
plementary to infrared spectroscopy is useful in the study of biological molecules. The cor-
responding relation is a method called ROA（Raman optical activity）which is comple-
mentary to VCD spectroscopy in the study of optical active molecules. We have introduced
an ROA spectrometer in 2003, which is the first commercially available apparatus in Japan.
On this occasion, we review the general principle of Raman spectroscopy and its extension
to ROA spectroscopy. We show some preliminary results of ROA measurement and com-
pare the ROA spectra to the corresponding VCD spectra, and investigate the characteris-
tic features of ROA spectra and applicability to optical active molecules, especially biologi-
cal samples. This paper aims to be a basis for our future research of making a new model in
interpreting VCD and ROA spectra, and for much complicated molecular systems.

Ⅰ．Optical Activity

The different character of refractivity（n）and absorption coefficient（ε）of matters
against left and right circularly polarized lights is called optical activity. Optical rotation is
a phenomenon which rotates the plane of linear polarized light after the light passed a cer-
tain material or medium. The linear polarized light is considered to be the addition of left
and right circularly polarized lights with the same amplitude and wavelength. When the
speeds of the two circularly polarized lights（c /n）passing in a medium are different,
there arises the phase difference between the two lights at the exit of the medium. In other
word, polarized plane is rotated, and the degree of rotation of the polarization is called
angle of rotation. When the rotation of the electric vector against time at a particular
space point is clockwise if looked backward from the direction of propagation of light（or
the trace of the electric vectors along the propagation coordinate at a particular time is
right hand helix）, the rotation is called dextrorotatory（d）or ＋, and when the rotation is
anticlockwise, the levorotatory（l）or －. Quantitatively, the optical rotation angle α is
defined as 

1-1）

where nl and nr are the refractive indices for left and right polarized lights, and λ is wave-
length of the light and l is the path length（in dm）of the medium.

The phenomenon that the angle of rotation of optical active substance differs for its
wavelength is called optical rotatory dispersion. The refractive index and absorption coeffi-
cients of optically active material are different for left and right circularly polarized lights.
Since the refractive index is dependent on the wavelength, the angle of rotation varies for
the wavelength. If there is any absorption of light, the incident linear polarized light turns
out to be elliptically polarized light. In general, the optical rotatory dispesion is the mix-
ture of the above-mentioned two phenomena.

α＝― l（nl－ nr）,π 
λ 
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When we detect the difference of the absorption coefficients of opposite circularly polar-
ized lights, it is called as circular dichroism. Since the linear polarized light changes to
elliptically polarized light, the circular dichroism is expressed not only by the difference of
the absorption coefficients but also by ellipticity θ which is defined by tanθ to be the
ratio of the lengths of minor（short）axis against to major（long）axis.

These optical activities occur for a single crystal in which the molecular arrangement is
in either real image or its mirror image. If a molecule itself has optical activity, its stereo
structure is distinguished by either left-handed or right-handed geometry, that is the mol-
ecule has isomeric structures in real and its mirror images. One of these isomers is called
an antipode or enantiomer, or optical isomer. In real organic compounds, the optical activ-
ity occurs for the molecule in which the four atoms or substituents connected to the cen-
tral carbon atom are different. The carbon atom in above-mentioned position is called
asymmetric carbon atom. The terminology described as chiral is also used for the nature
where the two objects cannot be overlapped as the case of left-hand and right-hand. From
the group theoretical point of view, the chiral nature is associated with the structure
which has no rotatory-reflection symmetry. The asymmetric center is also expressed as
chiral center.

Protein is an organic polymer which acts as the structural substance and as biofunction-
al substance in a living organism, and the protein is consisted of amino acid molecules
which is mostly optical active or in fact they are exclusively of l-isomers except glycine（it
is said there are some bacteria which have d-amino acids in the cell wall）. Therefore, the
detection of these chiral molecules is very important in the study of life mechanism from
microscopic point of view.

Traditionally, electronic CD spectroscopy has been used in this field. Recently, however,
the circular dichroism spectroscopy in molecular vibration field is rapidly developing
because of availability of commercial apparatus and the theoretical calculation tools
depending on high speed and large volumetric memory devices and sophisticated computer
algorithm. We introduced a vibrational circular dichroism spectrometer using infrared
absorption a few years ago. The vibrational circular dichroism spectrum in infrared region
is specially called VCD（abbreviation of vibrational circular dichroism）spectrum. On the
other hand, the complementary spectrum measured by Raman spectroscopy is referred to
as（V）ROA（Raman optical activity）spectrum. We reviewed the fundamental theory of
VCD spectroscopy and its spectra in our previous reports1，2）. Here we review the basis of
Raman spectroscopy and its ROA version, and show some of our preliminary experimental
results.

Ⅱ．Classical Theory of Raman Activity

Molecules are consisted of electrons with negative charge and nuclei with positive
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charge. In non-polar molecules, the centers of positive and negative charges coincide with
each other. On the other hand, in polar molecule the two centers are shifted each other.
The degree of the shift of opposite charges is represented by electric dipole momentμμ, as
defined by

2-1）

where the suffix 0 is used to represent the dipole moment under no external electric field.
μμ0 is called permanent dipole moment, that is the charge distribution the molecule has
intrinsically as its nature. μμis a vector, and its direction is defined to point from the nega-
tive to positive centers as shown in Fig. 1.

The charge distribution of the molecule exposed to the external electric field can be devi-
ated from that of the molecule without the electric field. This phenomenon of charge redis-
tribution is called polarization, and the electric dipole moment thus produced is called an
induced（electric）dipole moment μμp. This phenomenon is usually observed as the macro-
scopic phenomenon, such as dust adhesion on TV cathode ray tube or on intake tube of

μ0＝Σqiri , 
i
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Fig.1 Definition of dipole moment
The dipole moment is defined to direct from negative to positive charges.

Fig.2 Polarization
Suppose certain material（say, TV screen）is negatively charged. In small particle with neutral charge
such as a dust floating on the air, the center of positive charge is in coincident with that of negative charge.
When the neutral particle approaches to the charged material, the two centers are separated. The positive
center is closer to the charged material and the negative center is shifted to the other side. Because of the
law of inverse square between charges, the attraction force prevail against the repulsive force, and the
small particle（dust）adheres on the charged material（screen）. The separation of the two centers is
called polarization.



vacuum cleaner.
When the electric filed E is sufficiently low, the induced dipole moment is expressed as

the first order expansion of E, so that

μμp＝αE. 2-2）

The coefficientαis a second rank tensor which connects two vectorsμμp and E, and is
called polarizability tensor. The explicit form for Cartesian coordinates is

2-3）

The equation 2-3）tells that the direction of the induced dipole moment is not necessarily
aligned to the applied electric filed, but can be declined as determined by the off-diagonal
element of polarizability tensor. That means that the motion of an electron in the molecule
is restricted by the molecular structure or by the other electrons in the molecule.

Fig.3 Polarizability

Now we must consider the case of periodical electric field produced by the applied elec-
tromagnetic radiation（actually laser light）such as

E＝E0 cos2πνR t, 2-4）

where E0 is the amplitude of the wave andνR is the frequency. In general, the molecule has
several vibrational modes. Let take one of its modes with frequency ofνM. Then the polariz-
ability elements also should vibrate with the same frequency of the particular normal
vibration Q. Here we take one of the elements as

2-5）

Substituting 2-4）and 2-5）into 2-2）, we obtain the following relation,

α＝α0＋―cos2πνMt.∂α 
∂Q

　　αxx　αxy　αxz

＝　αyx　αyy　αyz

　　αzx　αzy　αzz

（μp）x

（μp）y

（μp）z

Ex

Ey

Ez

.
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Fig.3 Polarizability
The magnitude of the induced dipole moment, μμ, under applied external electric field, E, is dependent on
the polarizability,α, such that μμ＝αE. The direction of the induced dipole moment or the shift of charges
is not necessarily along the applied field. Therefore, the polarizability is a tensor quantity.



2-6）

The oscillating electric charge, in our case the electric dipole moment, emits the electro-
magnetic radiation of the same oscillation frequency. Therefore, the equation 2-6）shows
that there are three electromagnetic radiations different in frequencies are emitted. The
first term in the rightmost equation denotes Rayleigh scattering, such that the scattered
light has the same frequency as the incident laser light. In fact, Rayleigh scattering consti-
tute most of the intensities of the scattered light. However, there are very weak compo-
nents in the scattered light, weaker than 10－6 of the incident light strength. The frequen-
cies are different from that of the incident light. This is called Raman scattering after the
name C.V. Raman who discovered the phenomenon in 1928. This effect is described as the
second and third terms in 2-6）. This is essentially the same as beat frequency when the
two waves of different frequencies are mixed up. The second term with sum frequency, 
νR＋νM, corresponds to anti-Stokes scattering, and the third term with difference frequen-
cy,νR－νM, corresponds to Stokes scattering.

Equation 2-6）tells that the value of ∂α/∂Q should be non-zero to obtain Raman activi-
ty. That means that the polarizability must vary for the particular vibration for Raman
spectrum to be observable. Let’s explain by taking CO2 molecule as an example. We must
remember that the frequency of excitation laser is much higher than the molecular vibra-
tions, so that the molecule experiences more than 10 oscillations of exciting electromag-

μp＝（α0＋―cos2πνMt）（E0cos2πνRt） 

＝α0E0cos2πνRt

　＋―E0cos2π（νR＋νM）t

　＋―E0cos2π（νR－νM）t.

∂α 
∂Q

1∂α 
2∂Q

1∂α 
2∂Q
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Electronic excited state

Electronic ground state

(a) (b) (c)

ro-vibrational level

Fig.4 Rayleigh and Raman scattering
（a）Infrared absorption: direct transition from the ground level to the ro-vibrationally excited level within
the ground electronic state.（b）Rayleigh scattering.（c）（Stokes-）Raman scattering.



netic waves which generates the induced dipole moment in one cycle of molecular vibra-
tion. Consider the anti-symmetric stretching vibration of CO2. As shown in Fig.5（c）, the
electron cloud of distorted molecule generates the oscillating induced dipole moment in
frequency of exciting laser wave. On the other hand, as shown in Fig.5（d）, anti-symmetri-
cally distorted molecule will generate induced dipole moment just in 180 degree out-of-
phase to that shown in（c）. The induced dipole moments shown in Fig.5（c）and（d）
cancel each other, and there is no net induced dipole moment. At the end, there is no scat-
tered light from the sample molecule and this vibrational mode has no Raman activity. The
magnitude of Raman activity depends on the deviation of polarizability along the vibra-
tional coordinate and the polarizability is the quantity to indicate how much（and which
direction）the molecule can induce the dipole moment or deviate the charge distribution,
or in fact deviate the electron distribution. It turns out that the Raman activity depends
on how the size and shape of electron cloud would deviate as a whole along the vibrational
coordinate. This condition is realized for the change in bond length and angle, and eventu-
ally Raman spectrum is sensitive to skeletal structure and its change along the vibrational
mode. On the other hand, infrared activity depends on how charge distribution changes
along the vibrational coordinate. Therefore, the infrared spectrum is sensitive to function-
al groups located at the edge of molecule and Raman spectrum is sensitive to the skeletal
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－＋ － ＋
t

（a） （b） （c） （d）

Fig.5 Visual image of Raman activity
In one cycle of molecular vibration, the molecule is affected by oscillating radiation field with more than
one order higher frequency. The induced dipole moments in the course of molecular vibrations are shown
with arrows. The resulting induced dipole moments are considered to be the average of（a）and（b）for
ν1（totally symmetric stretching）mode, and（c）and（d）forν3（anti-symmetric stretching）mode.
Forν3 mode, the induced dipole moments connected by dotted arrows, for example, cancel each other.
Therefore,ν3 mode is inactive in Raman spectrum.



structure. These considerations are empirically verified.
Fig. 6 shows the pictural idea of Raman activity and infrared activity. In case of CO2

molecule, the band（ν1：symmetric stretching）which appears in Raman spectrum does
not appears as infrared spectrum, while the infrared active bands（ν3：anti-symmetric
stretching andν2：bending）do not appear as Raman spectrum. This is known as mutual
exclusion rule for the molecule that has a center of symmetry.

Now we consider the intensity of Raman spectrum. According to the classical electro-
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Fig.6 Raman and Infrared activities as exemplified by CO2

The shadowed area denotes the electron cloud and its volume roughly denotes the magnitude of polarizabil-
ity. The positions of the signs, ＋ and －, show the centers of their charges qualitatively. The sign, ±,
denotes the coincidence of the two centers.



magnetism, the total radiation emitted per unit solid angle in one-direction by oscillating
dipole moment is given by

2-7）

We are considering the case that the emitting dipole moment is induced by the electric
field of incident light so thatμμ＝αE as given by 2-2）. By substituting this relation into 2-
7）, we obtain

2-8）

The intensity of incident radiation Ii is connected with the amplitude of electric field vec-
tor E as

2-9）

Substituting this relation into 2-8）, we obtain

2-10）

The equation 2-10）tells that the Raman intensity is proportional to the 4th power of
frequency. That means that higher frequency or short wavelength is effective to obtain
stronger Raman signal. However, sometimes we have a disturbance of fluorescence when
the exciting wavelength approaches to the electronic absorption region. This is one of the
practical problems of experimental Raman spectroscopy. Of course, there are many strate-
gies to overcome this problem. But descriptions of these methods are out of this article.

Since the polarizabilityαis a tensor quantity as described above, the vector of emitted
light is not necessarily parallel to that of incident light. Let’s take laboratory fixed space X,
Y, and Z, and assume that the plane-polarized incident light comes into sample from X
direction and scattered light is observed along Y direction as shown in Fig.7. We can classi-
fy the scattered lights as designated by the following equations according to the relation of
directions of incident electric vector and observation,

2-11）

2-12）

The polarized part parallel to E is especially expressed by

2-13）

Above three equations are applied for a single radiator which is fixed to the laboratory
coordinate. If we want to obtain the expressions for a system where molecules are freely
rotate in the space, we must deduce the averaged expression of polarizability elements αFF′of
laboratory-fixed coordinates from those, αgg′, of the molecule-fixed coordinates. The gener-

I‖（obs.⊥）＝―α2
ZZE

2.2π3ν4

c3

IT（obs.⊥）＝―（α2
XZ＋α2

ZZ）E 2.2π3ν4

c3

IT（obs.‖）＝―（α2
XY＋α2

ZY）E 2,2π3ν4

c3

I＝―Iiα2.16π4ν4

c4

Ii＝―E2.c 
8π 

I＝―α2E2.2π3ν4

c3

I＝―μ2.2π3ν4

c3

Vibrational Circular Dichroism Spectroscopy 209



al formulas of transformation combining αFF′and αgg′is

2-14）

where αFg is the direction cosines between laboratory-fixed coordinate F and molecule-
fixed coordinate g. We can always determine the principal axes of particular molecule,
therefore 2-14）can be a little bit simplified to

2-15）

After some calculations, we can figure out the next equations, 

2-16）

2-17）

2-18）

where N is the number of molecules and I0 is the intensity of incident radiation.
Summations appearing in the above three equations can be replaced by functions of the
spherical part of the polarizability, α, and the anisotropy, β, which are defined by

2-19）

2-20）β＝－［（α1－α2）2＋（α2－α3）2＋（α3－α1）2］.1
2

α＝－（α1＋α2＋α3）,
1
3

I‖（obs.⊥）＝－―NI0　3Σα2
i ＋2Σαiαi

16π4ν4

c4
1
15 i i＜j

,

IT（obs.⊥）＝－―NI0　4Σα2
i ＋Σαiαi

16π4ν4

c4
1
15 i i＜j

,

IT（obs.‖）＝－―NI0　2Σα2
i －2Σαiαi

16π4ν4

c4
1
15 i i＜j

,

α
FF′＝ΣαiΦFiΦF′i. 

i＝1

3

α
FF′＝Σαgg′ΦFgΦF′g′, 

gg′ 
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Fig.8 Raman spectrum of CCl4 and depolarization ratio



Equations 2-16）to 2-18）are rewritten, in terms of the above quantities, by

2-21）

2-22）

2-23）

For the interpretation of vibrational modes, the depolarization ratio is often used, which
is defined by

2-24）

for a linear（plane）polarized incident light. Substituting 2-21～23）into 2-24）, we obtain
the following relation,

2-25）

If the polarization tensor is perfectly isotropic such as totally symmetric C-Cl stretch-
ing, the anisotropy term is zero（β2＝0）. Therefore, we have ρl＝0 as shown in Fig.8. On
the other hand, the depolarization ratio of non-totally symmetric mode is 3/4（ρl＝3/4）,
whereαγγ＝0,（γ＝x, y, z）andαγγ′≠0,（γ≠γ′）. In general, we have 0 <ρl < 3/4 for
totally symmetric modes withαγγ≠0, and ρl＝ 3/4 for non-totally symmetric modes. The
depolarization ratio is a useful piece of information to determine the symmetry of the
vibrational mode.

We have now deduced some formulae necessary for analyzing Raman spectrum.
However, for further detailed understanding of Raman process, we need to develop the
physical background based on quantum physics. One of the final answer in this review is to
obtain the quantum mechanical representation for Raman tensor, that is

2-26）

whereασρ is σρcomponent of Raman scattering tensor, e containing every eigenstate in
the electronic excited states, andνem is transition frequency from state m to e.〈n｜μρ｜e〉,
〈n｜μσ｜m〉, …are the components of transition electric dipole moments, and μρ is the

electric dipole moment operator in ρ direction. Γe is a damping factor of the e state. The
equation 2-26）is the fundamental formula for Raman scattering, and is called Kramers-
Heisenberg-Dirac dispersion equation.

Ⅲ. Quantization of Electromagnetic Field

3－1．Electromagnetic field and charged particle
Spectroscopy deals with the absorption and emission of radiation by molecules, in other

（ασρ）mn＝Σ 〈n｜μρ｜e〉〈e｜μσ｜m〉 
h（νem－νi）＋iΓe

〈n｜μσ｜e〉〈e｜μρ｜m〉 
h（νem－νi）＋iΓe

＋ ,

ρl＝　　　　　　　　　　　＝ 
3β2

45α2＋4β2
IT（obs.⊥）－I‖（obs.⊥） 

I‖（obs.⊥） .

ρl＝―,I⊥ 
I‖ 

I‖（obs.⊥）＝―NI0－.16π4ν4

c4
45α2＋4β2

45

IT（obs.⊥）＝―NI0－,16π4ν4

c4
45α2＋7β2

45

IT（obs.‖）＝―NI0－,16π4ν4

c4
2β2

15
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words the interaction between photon and molecule. This process should be treated by
quantum mechanics if we want to interpret the phenomenon quantitatively. Therefore, we
need to derive the quantum mechanical description of the electromagnetic radiation. We
will start to summarize the classical electromagnetism to the extent necessary to spec-
troscopy.

The electromagnetic phenomenon where exists charged particle and electric current is
described by the following four Maxwell-Lorentz equations

3-1）

3-2）

divH＝0, 3-3）
divE＝4πρ, 3-4）

where the physical quantities are defined as follow, c：velocity of light, H：magnetic field,
E：electric field, i：electric current density,ρ：charge density. If the charge is moving
with a speed of V, the following relation is approved,

i＝ρV. 3-5）

Also the electric current density and charge density should satisfy the following relation,

3-6）

This relation is instantly derived from 3-1）by operating div both sides, knowing the vec-
tor operation rule, div ror f≡0. This equation is called as continuation equation. In general,
a vector f can be represented by rot of some other vector, if the f satisfies the relation of
div f＝0. Then, 3-3）is rewritten by

H＝rotA. 3-7）
Substituting this relation into 3-2）, we obtain

3-8）

Also, in general, a vector d can be represented by grad of some scalar quantity, if the d sat-
isfies the relation of rot d＝0. Therefore, 3-8）is rewritten by 

3-9）

The minus sign of right side of the equation is put at some convenience. The quantities, A
and φ, thus introduced and defined are called vector potential and scalar potential. Now,
we introduce arbitrary function of position and time, λ. Let replace A andφ by the follow-
ing relations,

E＋ ＝－gradφ.1
c
∂A
∂t

rot　E＋ ＝0.1
c
∂A
∂t

＋div i＝0.∂ρ
∂t

rotE＝－　　  ,∂H
∂t

1
c

rotH＝　　 ＋　 i,∂E
∂t

1
c

4π
c
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3-10）

This is called gauge transformation. Substituting 3-10）into 3-9）, we obtain the next
homological equation, like

3-11）

This means that the above definition cannot determine A andφ uniquely. Therefore, we
can introduce the next additional condition that is called Lorentz condition,

3-12）

Substituting 3-7）and 3-9）into 3-1）, and taking 3-12）and the next vector operations, rot rot
＝grad div－Δ and div grad＝Δ（where Δ is Laplace operator）, into consideration, we
can derive next two equations,

3-13）

3-14）

These equations can be simplified to the next d’Alembert equation

3-15）

when i＝ρ＝0 , where Φ is any one of φ, A, E, and H. The expression of 3-15）is a typical
formula of wave, that is, the electromagnetic field in vacuum behaves like a kind of wave.

An electron under electric and magnetic field is subjected to the Lorentz force which is
represented by

3-16）

Therefore, the equation of motion of electron is described by

3-17）

where r is the position vector of electron. Here we introduce two functions defined by

3-18）

3-19）

Here H is a function of independent variables of x, y, z, px, py, pz, and t. Combining these
two equations with 3-17）, we can prove that next relations are satisfied,

3-20）－ － ＝ （α＝x， y, z）and （α＝x， y, z）.∂H 
∂α 

dpα

dt
＝ ∂H 

∂pα

dα
dt

p＝me － A.dr
dt

e
c

H＝ －eφ,p＋　A
1

2me

e
c

me　　＝ ＋ 　，rot A＋c gradφ  ,d2r
dt2

e
c
∂A
∂t

dr
dt

f＝－e　E＋　［V, H］ .1
c

　　　－ΔΦ＝0,1
c2
∂2

∂t2

　　　－Δφ＝4πρ.∂2φ 
∂t2

1
c2

　　　－ΔA＝　 i
1
c2
∂2A 
∂t2

4π 
c

　　　＋divA＝0.1
c
∂φ 
∂t

E＋　　　＝－gradφ′.1
c

H＝rotA′， ∂A′
∂t

A′＝A＋gradλ，φ′＝φ－　　 .1
c
∂λ
∂t
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In these derivations, we take the relation of ＝ ＋ ＋ ＋ into
consideration. The equation 3-20）shows that H is a Hamilton function of the system, and
this is the Hamiloton’s canonical equation of motion, and p is a momentum canonical con-
jugate to r. 

To convert the problem into that of quantum mechanics, we must obey the general rule
that classical momentum should be replaced by its differential operator such that

3-21）

Then, the Schrödinger equation for one electron under electromagnetic field is given by

3-22）

3-23）

The equation 3-23）can be rewritten for the general charged particles as follows

3-24）

3－2．Induced polarization and optical rotation
We will consider electric and magnetic moments induced in atom or molecule under

oscillating electromagnetic field. Let the system be in a stationary state represented by the
following wave function,

3-25）

The system of quantum number, n, at the beginning（that is cn（t）～～1）is perturbed by the
electromagnetic field and the wave function for the weak field is now described by the ordi-
nary expansion as

3-26）

Time evolution of coefficient cm（t）is written by

3-27）

where H′is a perturbing Hamiltonian.
The perturbing Hamiltonian H′is a difference of 3-23）and that derived from 2-23）by

putting A＝φ＝0. Under this condition, we can derive the relation of div A＝0 from
Lorentz condition（3-12））. The effect of A2 can be ignored for electromagnetic field not
extremely strong. Then H′is written by

exp（－i　　   t）,Em－En

h
＝－－ dcm

dt
i
hΣ m≠n

cm（t）ψ0
m H′ψ0

n

n exp（－i　t）.Em

hΣ 
m≠n

cm（t）ψ0Ψ＝Ψ（0）＋ m

Ψ（0）＝ψ0exp（－i　t）.n n
En

h

H＝ Ap－ ＋epφp＋V.　
i

ep

c
1

2mp
Σ 

p（particles） 

2
（grad）p
h

H＝ 

＝－ Δ 

Aα ＋ －eφ＋V

－eφ＋V.

　
i

e
c

1
2me

2me
－ ihe

mec
－ ihe

2mec

∂ 
∂α Σ 

α＝x，y,z

2

（A・grad） divA＋ e2

2mec2 A2

h

h

h
i
∂ 
∂t

H＝Ψ（x， y， z， t）＝ Ψ（x， y， z， t）,

,（α＝x， y, z）.h

i
∂ 
∂α pα→ 

∂
∂z

∂z
∂t

∂
∂y

∂y
∂t

∂
∂x

∂x
∂t

∂
∂t

d
dt
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3-28）

The vector potential Aj in the molecule can be expanded by

Aj＝A0＋rj（gradA0）＋…, 3-29）

where the origin of the coordinates is fixed in the molecule and indicated by suffix 0.
Substituting this equation into 3-28）we obtain

3-30）

where

3-31）

We can now obtain the matrix elements for the interaction between radiation and parti-
cle system by substituting 3-30）into 3-27）. The matrix element derived from the first
term of 3-30）is

3-32）

Here μμmn is given by

μμmn＝∫Ψ＊mμ̂Ψndτ. 3-33）

andμ̂μis an electric dipole moment operator as defined byμ̂μ＝Σ
j
pjrj.

Remembering that orbital angular momentum of particle j is represented by 
m j＝－i （rj×（grad）j）and taking 3-7）into consideration, the second term of H′is written
by

3-34）

This is the term due to magnetic moment. Also it is verified that the third term in 3-30）
represents electric quadrupole moment.

Thus higher order electric and magnetic moments give the matrix elements of H′.
Substituting the calculated matrix element of H′into 3-27）and integrating the equation,
we have time dependent coefficient cm, and then substituting this value into 3-26）, we can
evaluate how the other states are mixed into the initial state. Therefore, the perturbed
state gains the electric and magnetic moments due to the mixing of the other moments
other than the initial moment. These are called the induced moments. They are given by

Σ 
pj

2mjc
H0m j （mH0） m＝ mj－ ＝－ 

j
Σ 

pj

2mjcj

.

＝－ Σ m

ihpj

mjc
A0（grad）j A0　mnexpi

hcΨ （0）＊ 
nΨ （0） （Em－En） Em－Eni t

h
.μ 

＝ 

＝ 

＋ 

＋ 

＋ ∂Ax

∂x
∂ 
∂xj

1
2

Q
0

∂Ay

∂y 0
xj ＋ ∂ 

∂yj

∂Az

∂z 0
yj

yj zj

∂ 
∂zj

zj

∂Az

∂y
∂Ay

∂z 0

＋ ∂Ay

∂x
∂Ax

∂y 0

＋ ∂ 
∂zj

∂
∂yj 0

xj yj＋ ∂ 
∂yj

∂
∂xj

＋ ＋ zj xj＋ ∂ 
∂xj

∂
∂zj 0

∂Ax

∂z
∂Az

∂x 0

.

H′＝ Σ 
j

ihpj

mjc
A0（grad）j （rotA）0 rj× ＋ ＋ ＋… ,（grad）j1

2 Q

H′＝ Σ 
j

ihpj

mjc
Aj（grad）j.
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Induced electric moment :μμ′＝αE′＋γH′－ β . 3-35）

Induced magnetic moment : m′＝κH′＋γE′＋ β . 3-36）

Here E′and H′are the effective radiation field in the molecule. The coefficients in 3-35）
and 3-36）are given by

3-37）

3-38）

3-39）

3-40）

Hereνis the frequency of radiation and νmn＝（Em－En）/h. The magnitude of the matrix
elements of μμ is bigger than those of m, andαis far greater than the other three values in
3-38）to 3-40）.αis called polarizability andκis called magnetic susceptibility. β is relat-
ed to optical rotatory or optical activity.

Ⅳ．Harmonic Oscillator and Ladder Operators

As the preparation for the following discussions, we will summarize the fundamental
properties of the harmonic oscillator. The Hamiltonian of one dimensional oscillator of
mass m and frequencyωis described by

H＝ ＋ ω2
q

2. 4-1）

To convert this equation to that in quantum mechanics, the angular momentum should
be replaced by derivative operator as described in 3-21）. Then we have the Schrödinger
equation corresponding to 4-1）as

4-2）

and the eigenfunctions of the above equation are described by

4-3）

where Hn（x）is a Hermite polynomial of degree n and the eigenvalues are given by

4-4）

If we change the variables as follows

4-5）
mω 

h
ξ＝ q， h

mω un＝ ψn，

En＝ n＋1　2 hω.

2n/2ψn（q）＝ mω 
π h

mω 
2h

mω 
h

1
n！ 

1/4
exp q2 q ,Hn－ 

h2

2m
d2

dq2－ 1
2＋ ψ（q）＝Eψ（q）,mω2q 2

m
2

p2

2m

Σ c

3πh
β＝ 

m ν2
mn－ν2

n m m nmIm μ 
.

Σ 2
3h

γ＝ 
m ν2

mn－ν2
νmn n mμ m nmRe ,

Σ 2
3h

κ＝ 
m ν2

mn－ν2
νmn n mm 2

,

Σ 2
3h

α＝ 
m ν2

mn－ν2
νmn n m 2μ 

,

dE′
dt

1
c

dH′
dt

1
c
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the equation 4-3）can be written simply by

4-6）

New variable and function have the following properties.

4-7）

4-8）

4-9）

4-10）

un（－ξ）＝（－1）n
un（ξ）. 4-11）

We will investigate the characteristics of the harmonic oscillator, since it has a great
expansible nature in quantum mechanics. Let us introduce new variables defined by

P
2＝p

2/m，Q
2＝mq

2． 4-12）

Then 4-1）is rewritten as

H＝ （P
2＋ω2

Q
2）． 4-13）

The transition to quantum mechanics is accomplished by reinterpreting P and Q as
Hermitian operator which obey the following commutaion relation

［Q，P］＝i .
4-14）

This is equivalent to the replacement of P by －i ∂/∂Q. Now, let us define the two opera-
tors by the linear combination of Q and P as

4-15）

or

4-16）

It is easily shown that new operators have the following commutaion relation
［a，a†］＝1, 4-17）

which is equivalent to 4-14）. And the Hamiltonian 4-13）is represented by

4-18）

where
N＝a†a 4-19）

H＝ 12
1
2hω（a†a＋aa†） a†a＋ ＝hω 1

2N＋　　,＝hω 

Q＝ 2ω 
h（a＋a†）， P＝i 2（a†－a）． hω 

a＝ 2hω 
1 （ωQ＋iP）， a†＝ 2hω 

1（ωQ－iP）,

1
2

ξun＝ n＋1
2 n＋1

n
2u n－1,u＋ 

1
2

d
dξ ξ un＝ n＋1 un＋1,－ 

1
2

d
dξ ξ un＝ nun－1,＋ 

unumdξ＝δnm,∫ 
＋∞ 

－∞ 

（ π2n
n！）

un（ξ）＝ 1
1/2

exp（－ξ2/2）Hn（ξ）.
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is called the number operator. Attention must be paid that N is Hermitian, although a and
a† are not Hermitian. Knowing the commutation relation of 4-17）, the next relations are
also approved,

Na＝a†aa＝（aa†－1）a＝a（a†a－1）＝a（N－1）, 4-20）
Na†＝a†aa†＝a†（aa†＋1）＝a†（N＋1）. 4-21）

Let | n〉be an eigenstate of N with eigenvalue n, that is
N｜n〉＝n｜n〉. 4-22）

Since N is Hermitian, the eigenvalue n is real and the next relation is required, that is
〈n′｜n〉＝δn′n. 4-23）

From 4-20）and 4-22）,
Na｜n〉＝a（N－1）｜n〉＝aN｜n〉－a｜n〉＝an｜n〉－a｜n〉＝（n－1）a｜n〉, 4-24）

and from 4－21）and 4－22）,
Na

†｜n〉＝a
†（N＋1）｜n〉＝a

†
N｜n〉＋a

†｜n〉＝a
†
n｜n〉＋a

†｜n〉＝（n＋1）a†｜n〉. 4-25）
Thus we have the result that if | n〉is an eigenstate of N with eigenvalue n, then a| n〉is
also an eigenstate of N with eigenvalue  n＋1.

After some algebra and taking the boundary condition, we can reach the following equa-
tions

4-26）

4-27）

Thus the operators a and a† have been given the names annihilation and creation opera-
tors, respectively. They have the effects that step down and up the operated eigenstate.

Ⅴ．Quantum Theory of Raman Activity

5－1．Hamiltonian of the Radiation Field
The electromagnetic field in vacuum can be represented by the following Maxwell equa-

tion in MKS unit, and by using only E and B,

5-1）

5-2）

div B＝div E＝0, 5-3）
where the relations of D＝ε0E and B＝μ0H are taking into account.

Furthermore, E（r, t）and B（r, t）are not independent and they are completely represent-
ed by a single vector potential A（r, t）, which defined by

B＝rot A. 5-4）
The relations in eq. 4-3）are automatically satisfied by vector identity relations.

rot B－ε0μ0 ＝0,∂E
∂t

rot E＋ ＝0,∂B
∂t

a
†｜n〉＝ n＋1｜n＋1〉.

a｜n〉＝ n｜n－1〉,
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Substituting 5-4）into 5-1）, we obtain the following equation

E＝－ . 5-5）

Then substituting 5-4）and 5-5）into 5-2）, the differential equation for A to be determined
is derived as

∇2
A－ ＝0, 5-6）

where

5-7）

is the speed of electromagnetic field in vacuum. For the relation divE＝0 in 5-3）to be ful-
filled, the next relation must be satisfied, that is

div A＝0. 5-8）
This is also verified in the preceding chapter.

Let A（r, t）be represented by a Fourier expansion of oscillators as
A（r, t）＝A0exp（i（k・r－ωt））＝0, 5-9）

where k is a propagation vector. By substituting 5-9）into 5-6）, we can obtain the relation

（k2
x＋k2

y＋k2
z）＝ ω2, 5-10）

and knowing |k |＝k, we have
ω＝ck. 5-11）

Substituting 5-9）into 5-8）, we have the following relation,
div A＝i（A0・k）exp（i（k・r－ωt））＝0. 5-12）

For the above equation to be satisfied, the next relation has to be approved
A0・k＝0. 5-13）

That is, A0 is perpendicular to the k vector. This shows the radiation field A is transversal
wave. Let introduce a unit vector e which lies in the direction of A, that is

A（r・t）＝A0 eexp（i（k・r－ωt））. 5-14）
Substituting this relation into 5-4）and 5-5）, the following relations are deduced

E（r・t）＝iωA0 eexp（i（k・r－ωt））, 5-15）
B（r・t）＝i［k×e］A0 exp（i（k・r－ωt））. 5-16）

For E and B to have physical meaning as natural phenomenon, these vectors should be
real. Therefore, 5-14）can be rewritten by the following equations,

A（r・t）＝e｛Ak（t）eik・r＋A
＊
k（t）e－ik・r｝, 5-17）

and
Ak（t）＝｜Ak｜e－i（ωt＋δ）. 5-18）

So far we assumed the radiation is to be linear polarized wave, that is the oscillation is in
one spatial direction perpendicular to the propagation. General wave can oscillate in any

1
c2

c＝ε0μ0
1

∂2A
∂t2

1
c2

∂A
∂t
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direction in plane perpendicular to the k vector. This is expressed by using two unit vec-
tors perpendicular to each other and also perpendicular to the k vector. Therefore, the
general formula for A is

5-19）

We may, if we so desire, replace the linear polarization vectors ek1 and ek2 by unit vectors
which indicate circular polarization. This is accomplished by defining

5-20）

These vectors satisfy the following equation,

e
＊
kγ×ekγ′＝iγkδγγ′(γ，γ′＝±1). 5-21）

With γ＝＋1 the cross product gives a vector parallel to the direction of propagation
whereas γ＝－1 the cross product is antiparallel. For this reason one refers to e k＋1 and e k－1

as positive and negative helicity vectors. Also they represent left and right circular polar-
ization according to standard optical convension.

According to the electromagnetism, the energy density of electromagnetic field is

5-22）

Substituting 5-15）and 5-16）into 5-22）and generalizing them according to the proce-
dure of 5-19）, we obtain

5-23）

We now introduce a new set of variables

5-24）

which, when substituted into 5-23）, gives

5-25）

It is now shown that Pkγ and Qkγ satisfy the Hamilton equations; this will identify these
quantities as canonical variables and therefore W in the form 5-25）will be interpretable as
the Hamiltonian of the electromagnetic field. Upon inverting 5-24）,

5-26）

5－2．Quantization of the Radiation Field
Having identified the Hamiltonian of each mode of an electromagnetic field with that of

a harmonic oscillator we may proceed the quantization exactly as in the case of the har-
monic oscillator described in chapter 4. The transition to quantum mechanics is accom-

Qkγ＝ （Akγ＋Akγ）,1
2

＊ Pkγ＝－i（Akγ－Akγ）.1
2

＊ 

W＝ （Pkγ＋ωkQkγ）.1
2Σ kγ 

2 2 2

Akγ＝ （ωkQkγ＋iPkγ）， 2εωk

1
Akγ＝ （ωkQkγ－iPkγ）,2εωk

1＊ 

W＝ （ωk＋c2k2）（AkγAkγ＋AkγAkγ）＝ Σ 
k,γ 

Σ2εωk AkγAkγ.
k,γ 

2 ＊ 2＊ ＊ 

W＝ （D・E＋B・H） εE2＋ B21
2 ＝ 12

1μ .

ek＋1＝－ 12（ek1＋iek2）, ek－1＝－ 12（ek1－iek2）.

A（r・t）＝ Akγ（t）eik・r＋Akγ（t）eik・rΣΣekγ 

2

γ＝1k

＊ .
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plished by interpreting Pkγ and Qkγ as operators that satisfy the commutation relations
［Qkγ，Pk′γ′］＝i δkk′δγγ′,［Qkγ，Qk′γ′］＝［Pkγ，Pk′γ′］＝0. 5-27）

By analogy with 4-15）, we define

5-28）

In terms of these operators the Hamiltonian denoted by 5-25）becomes

5-29）

in which Nkγ is known as the number operator for mode k and polarizationλand is given
by

Nkγ＝a
†
kγakγ. 5-30）

We can easily deduce the energies of the radiation system as

5-31）

5－3. Interaction Hamiltonian and Matrix Elements
The general form of 3-18）for one electron system is

5-32）

Here m is the mass of electron and p is the momentum of electron and A is the vector
potential. The extension to the general molecular system should be straightforward now.

The total Hamiltonian for a radiation field and a molecular system may be written as
H＝Hrad＋Hmolecule＋Hint. 5-33）

Here

5-34）

The interaction between radiation field and molecule comes from the terms which have
the vector potential A in 5-32）. That is

5-35）

The first term of the above equation is rewritten as

5-36）

where V is the volume of the cavity for the radiation field. We will replace the coefficient
before the vector representation to K in the following discussions. Then 5-36）is split into
two terms

5-37）H1
（－）＝ΣK（ekλ・p）akλeik・r,

kλ 

H1＝Σ（e/m） 
kλ 

2πh/ωkV（ekλ・p）［akλe
ik・r＋akλe

－ik・r］,†

Hint＝－－p・A
e
m

＋－A2．e2

2m

Hrad＝ hωkΣ 
kλ 

akλakλ＋－ 1
2

†

Hmolecule＝ ＋V.Σ 
i,α 

pi,α　mi
2

,

H＝－（p－eA） 1
2m

2
.

E＝ Ekγ＝ nkγ＋－ .hωkΣ 
kγ 
Σ 

kγ 

1
2

H＝ †
hωk（akγakγ＋－） Σ 

kγ 
hωk（Nkγ＋－）,Σ 

kγ 
＝ 1

2
1
2

akγ＝ （ωkQkγ＋iPkγ）， 1
2hωk

akγ＝ （ωkQkγ－iPkγ）.1
2hωk

†
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5-38）

The wave function of the interacting system will be a product of a molecular wave func-
tion, | a〉, and a wave function, | n1, n2, … nj,…〉, describing the radiation field, so that

| a ; n1, n2, …, nj,…〉. 5-39）
Then the matrix element of H1

（＋）in 5-38）, for example, will be

5-40）

where we used a matrix element derived from 4-28）.
Matrix element of the type

5-40’）

may be simplified if k・r≪1 so that,
e
ik・r～～1. 5-41）

Using the commutation rule,［ri, p2］＝2i pi, we can derive the following commutation
rule

［r, Hmolecule］＝（i /m）p. 5-42）
Therefore

5-43）

At the end, we have the matrix elements for H1
（－）and H1

（＋）as

5-44）

5-45）

Equations 5-44）and 5-45）obviously shows the terms correlated with electric dipole tran-
sition. The next higher approximation for eik・r is

eik・r～～1＋ik・r, 5-46）
and this higher term gives rise to the matrix elements related to magnetic dipole transi-
tion and electric quadrupole transition, but we skip the detail derivation which is out of
scope of this article.

Now we will return to the Hamiltonian of 5-35）. The representations by vector potential
for 5-36）are shown in 5-37）and 5-38）. That for second term of right hand side is written
as

5-47a）

The quantities in the summation of the above equation can be rearranged to be

H2＝KΣΣ 
k′λ′ kλ ωkωk′ 

1 (ekλ・ek′λ′)×（akλeik・r＋akλe－ik・r）（ak′λ′eik′・r＋ak′λ′e－ik′・r）.† †

b;nkλ＋1 H1
（＋）

a;nkλ＝ieK′ nkλ＋1ekλ・ 〈b r a〉.

b;nkλ－1 H1
（－）

a;nkλ＝ieK′ nkλekλ・ 〈b r a〉,

〈b p a〉＝（m/ih） 

〈b r a〉＝imωk〈b r a〉.

b［r, Hmolecule］ a

＝（ih/m）（Eb－Ea） 

（ekλ・p） e－ik・r ab pe－ik・r ab＝ekλ・ 

b;nkλ＋1 a;nkλ K＝ nkλ＋1 （ekλ・p） e－ik・r a  ,H1
（＋） b

H1
（＋）＝ΣK（ekλ・p）akλe－ik・r.

kλ 

†
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5-47b）

In conclusion, the Hamiltonian H2 is constituted of four parts,
H2＝Hkλ

（＋）
H
（＋）
k′λ′＋Hkλ

（－）
H
（－）
k′λ′＋Hkλ

（＋）
H
（－）
k′λ′＋Hkλ

（－）
H
（＋）
k′λ′, 5-47c）

in which Hkλ
（＋）

Hk′λ′
（＋）refers to the term containing ak

†
λak

†
′λ′; Hkλ

（＋）
Hkλ
（－）to the term with ak

†
λak′λ′,

and so on. Matrix elements of akλ and ak
†
′λ′may be obtained as follows

5-48）

The matrix elements of bilinear combinations of akλ and ak
†
λ can be obtained from the above

relations, and the change in the number of photons must be zero or two.
Raman scattering is a two-photon process from the initial state―i〉to the final state―f〉

via the intermediate state―l〉. The matrix element of this process is represented by the
second-order contribution of H1 and the first-order contribution due to H2. The result of
some derivations, we have

5-49）

where the dipole approximation is introduced whereby all exponentials are set equal to
unity. Using this matrix element, we can derive the transition probability per unit time
that an incident kλphoton has been scattered into the element of solid angle dΩ as a
k′λ′photon, which is

5-50）

The above equation is known as the Kramers-Heisenberg dispersion formula. This formula
is also expressed as a differential scattering cross section, as

5-51）

where dσ is（number of k′λ′photons scattered / sec sr）, dΩ is（number of incident kλ
photons / sec cm2）, r2

0＝e
2/mc

2＝classical radius of the electron, and p fl＝〈f｜p｜l〉，
pli＝〈l｜p｜i〉.

To calculate the necessary terms in 5-51）, we need to prepare some commutation rela-
tions for the operators that appear in the formula. The examples are the following types,

5-52）f e・p l f e・r l＝－（Ef－El） im
h ,

（ek′λ′・pfi） （ekλ・pli） 

＝dσ 
dΩ 
ωk′ 
ωk

W/dΩ 
nkc/V

1
mΣ l

＋ 
Ei－El＋hωk

（ekλ・pfi） （ek′λ′・pli） 
Ei－El－hωk′ 

× （ekλ・ek′λ′）δfi

2

＝r0
2 (nk′λ′＋1) ＋ ,

f ek′λ′・p l l ekλ・p i

e2

mc2W＝ c
V
ωk′

ωk

f ekλ・p l l ek′λ′・p i1
mΣ l

＋ 
Ei－El＋hωk Ei－El－hωk′ 

dΩnkλ（nk′λ′＋1） 

× （ekλ・ek′λ′）δfi

2

＋ .

f Hint　i

f ek′λ′・p l l ekλ・p i

nkλ（nk′λ′＋1） 
ωkωk′ 

＝K ｛（ekλ・ek′λ′）δfi

f ekλ・p l l ek′λ′・p i1
mΣ l

＋ 
Ei－El＋hωk Ei－El－hωk′ 

,

†
nkλ＋1 akλ nkλ nkλ＋1， nkλ－1 akλ nkλ nkλ ＝ ＝ .

ωkωk′ 

1 (ekλ・ek′λ′)
†

† †

†
akλak′λ′exp［－i（k＋k′）・r］＋akλak′λ′exp［i（k＋k′）・r］ 
＋akλak′λ′exp［－i（k－k′）・r］＋akλak′λ′exp［i（k－k′）・r］ 

.

Vibrational Circular Dichroism Spectroscopy 223



5-53）

where the notation so far used is simplified as follows
ekλ＝e, ek′λ′＝e′, nkλ＝n , nk′λ′＝n′,ωk＝ω,ωk′＝ω′. 5-54）

By replacing the above two type relations and knowing Ef－Ei＝ ω－ ω′, we finally
obtain

5-55）

This is the general form for Raman scattering as shown in 2-26）.

Ⅵ．Raman Optical Activity

The interaction of a molecule with a dynamic electromagnetic field is needed to investi-
gate the Raman optical activity（ROA）phenomenon. Assume that the time dependent,
perturbed wave function,Ψk（t）, can be expressed by the unperturbed wave function Ψn

0 (t）
using the time dependent coefficients cn（t）as

Ψk（t）＝Σ
n

cn（t）Ψn
0 (t）. 6-1）

The time dependent coefficients cn（t）can be written as

6-2）

where ωns＝ （E
0
n－E

0
s）. The above equation can be obtained by integrating 3-27）from

time zero to a certain time.
Let us consider the influence of the dynamic field perturbation, which is weak, on the

system. The time dependent electric dipole moment is given as
μα（t）＝〈Ψs（t）｜μα｜Ψs（t）〉, 6-3）

whereαis the cartesian component, x, y or z. In case of the electric field perturbation, the
first order correction of the Hamiltonian, H1（t）, is expressed as

H1（t）＝－μα′Eα′（t）， 6-4）
where E（t）is the time dependent electric field. Notice thatα′is representing the compo-
nent of the field and is distinguished from the component of the electric dipole moment,α.
Substituting 6-4）into 6-2）, the coefficient is written as

6-5）

where μα′,ns＝〈Ψ0
n｜μα′｜Ψ0

s〉. When the applied electric field oscillates atω frequency and is
given as

Eα′（t）＝Eα′［eiωt＋e－iωt］＝2Eα′cosωt， 6-6）
the time dependent coefficient becomes

cn（t）＝－－ ∫ μα′， ns Eα′（t）eiωnstdt,i
h

1

cn（t）＝－－ i
h∫ 〈Ψ0

n　H1（t）　Ψ0
s〉eiωnstdt,

dσ 
dΩ ωω′3

Σ 
l

＋ 
Ei－El＋hω Ei－El－hω× 

2

＝r0
2 (n′＋1) m2

f e′・r l l e・r i f e・r l l e′・r i
.

f e′・r l l e・r i（El－Ei＋hω′） 
f e・r l l e′・r i（Ef－El＋hω′） 

m2

h2e′・eδfi

－ 
＝ ,
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6-7）

From 6-1）and 6-3）, μα（t）can be obtained as
μα（t）＝μα（0）＋2ααα′Eα′cosωt－2α′αα′Eα′sinωt＋…． 6-8）

In this equation,ααα′andα′αα′are the frequency dependent electric dipole-electric dipole
polarizabilities, and they are expressed as

6-9）

6-10）

Using 6-6）, 6-8）can be rewritten as

μα（t）＝μα（0）＋ααα′Eα′（t）＋α′αα′ ＋…． 6-11）

When ωns≫ω, 6-9）expresses the static electric dipole polarizability.
The electric dipole moment in the presence of a dynamic magnetic field Hα′（t）can be

evaluated in the same way. In this case, the perturbation analogous to 6-4）is written as
H1（t）＝－mα′Hα′（t）， 6-12）

where m is the magnetic dipole moment. Then the time dependent electric dipole moment
can be obtained analogously to 6-11）as

μα（t）＝μα（0）＋Gαα′Hα′（t）＋G′αα′ ＋…． 6-13）

In this equation, Gαα′and G′αα′are the frequency dependent electric dipole-magnetic
dipole polarizabilities, which are expressed as

6-14）

6-15）

The magnetic dipole moment in the presence of the dynamic electric field can also be
expressed by using Gαα′and Gαα′as

mα（t）＝mα（0）＋Gαα′Eα′（t）－G′αα′ ＋…． 6-16）

When both electric and magnetic fields are taken into account, 6-11）and 6-13）must be
summed up, therefore

μα（t）＝μα（0）＋ααα′Eα′（t）＋α′αα′ ＋Gαα′Hα′（t）＋G′αα′ ＋…． 6-17）

Thus, the general expression for any molecular property Pα（t）under the influence of time
dependent electric and magnetic fields can be obtained as follows,

Pα（t）＝Pα（0）＋Sαα′Eα′（t）＋S′αα′ ＋Tαα′Hα′（t）＋T′αα′ ＋…, 6-18）H
・α′（t）
ω

E
・α′（t）
ω

H
・α′（t）
ω

E
・α′（t）
ω

E
・α′（t）
ω

h（ω2
ns－ω2）  G′αα ′＝Im Σ 2μα,snmα′,nsω 

n≠s
－ ． 

h（ω2
ns－ω2） Gαα ′＝ReΣ 2μα,snmα′,nsωns

n≠s
， 

H
・
α′（t）
ω

E
・
α′（t）
ω

h（ω2
ns－ω2） α′αα ′＝Im Σ 2μα,snμα′, nsω 

n≠s
－ ． 

h（ω2
ns－ω2） ααα ′＝Re ， Σ 2μα, snμα′, nsωns

n≠s

cn（t）＝ 2μα′， nsEα′eiωnst
（ωnscosωt－iωsinωt－ωnse－iωnst） 

h（ω2
ns－ω2） ． 
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where

6-19）

6-20）

6-21）

6-22）

In these equations, Pα,sn is defined by Pα,sn＝〈Ψs
0｜Pα｜Ψn

0〉so as to express the molecular
property with the appropriate operator Pα. Using 6-18）, the electric quadrupole moment
θαβ（t）in the presence of dynamic electric field is given as

θαβ（t）＝θαβ（0）＋Aαβα′Eα′（t）． 6-23）
In 6-23）, Aαβα′is the electric dipole-electric quadrupole polarizability, and is expressed as

6-24）

where θαβ, sn＝〈Ψ0
s｜θaβ｜Ψn

0〉. Noting that the real values ofθαβ, snμα′, ns andμα′, snθαβ, ns are
equal, 6-23）and 6-24）can also be written as

θαβ（t）＝θαβ（0）＋Aα′αβEα′（t）， 6-25）

6-26）

Raman optical activities are determined by the changes in molecular electric dipole-elec-
tric dipole polarizabilityααβ, electric dipole-magnetic dipole polarizability G′αβ and electric
dipole-electric quadrupole polarizability Aαβγ, during the molecular vibration. The changes
inααβ also determines the Raman activities, however, the changes in G′αβ and Aαβγ are
unique to ROA.

ROA measurements can be carried out in different experimental geometries. The right
angle, back and forward scatterings are those where the angle between the incident and
scattering lights is 90°, 180°, and 0°, respectively. When the incident monochromatic light
is modulated to the right and left circular poralization states, and the synchronous differ-
ence in the Raman scattering is detected, the configuration is referred to as the incident
circular polarization（ICP）modulation method. In the ICP method with 90°scattering
geometry, the differences for the scattered light with polarization parallel and perpendicu-
lar to the scattering plane（the yz-plane）are called as depolarized and polarized ROA
scattering, respectively.

When the incident light is linearly polarized, and the intensity difference associated with
the right and left circular polarization states of the scattered Raman light is measured,
this configuration is referred to as the scattered circular polarization（SCP）modulation
method. When the intensity difference associated with the right and left circular polariza-

h（ω2
ns－ω2） Aα ′αβ＝ReΣ 2μα′, snθαβ, nsωns

n≠s
． 

h（ω2
ns－ω2） Aαβα ′＝ReΣ 2θαβ,snμα′,nsωns

n≠s
,

h（ω2
ns－ω2） T′αα ′＝Im Σ 2Pα,snmα′,nsω 

n≠s
－ ． 

h（ω2
ns－ω2） Tαα ′＝ReΣ 2Pα,snmα′,nsωns

n≠s
， 

h（ω2
ns－ω2） S′αα ′＝Im Σ 2Pα,snμα′,nsω 

n≠s
－ ,

h（ω2
ns－ω2） Sαα ′＝ReΣ 2Pα,snμα′,nsωns

n≠s
， 
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tion states of the scattered Raman light is measured, with in- or out-of-phase circular
polarization state for the incident radiation, the configuration is referred to as the dual cir-
cular polarization I（DCPI）or the dual circular polarization II（DCPII）modulation method.

ROA intensity is expressed as

6-27）

whereνis the frequency of incident light,νa is the frequency corresponding to ath normal
mode, k is the Boltzmann constant and T is the temperature of the sample. Iαγ and Iβδ

express the intensity of the scattered Raman light, where the superscripts and the sub-
scripts represent the polarization states of incident and scattered light, respectively. Pa is
called the Raman optical activity, and its value depends on both the measurement type and
the scattering geometry. As we have mentioned before, Raman optical activities depend on
the changes in molecular electric dipole-electric dipole polarizabilityααβ, electric dipole-
magnetic dipole polarizability G′αβand electric dipole-electric quadrupole polarizability 
Aαβγ, during the molecular vibration. Table 6-1 shows the expressions for the Raman opti-
cal activities, Pa. These activities involve the terms containing the following quantities.

6-28）αa＝－ 1
3
∂αxx

∂Qa
＋ ∂αyy

∂Qa
＋ ,∂αzz

∂Qa

（ν　νa） ± 4

±1 exp

± ± 2πνah 4πc4νa

kT

h・ Pa， ・ I
γ－I

δ∝ α β 
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6-29）

6-30）

6-31）

The experimental ROA intensities depend on the exciting frequency and the incident
laser power. Furthermore, the instrumental response needs to be taken into account. To
avoid these difficulties, a normalized circular intensity differential（CID）is used to
express the experimental quantities. CID is written as

6-32）

The expressions forΔcorresponding to different experimental arrangements are obtained
as follows. In these expressions,βa

2 is the anisotropy of the poralizability derivative tensor
given as

6-33）

（a）Right Angle Scattering

In this case, the incident light is considered to be propagating along z-axis, and the scat-
tered light is observed along y-axis, with the sample placed at the origin O.
ICP Modulation

Depolarized ROA

6-34）Δ（90, R, L, z, z）＝ I
R

z－I
L

z

I
R

z＋I
L

z

＝ ． 8β2

2
c・8・ δ2

3γ2

 

－ 

β2＝－ 1
2
∂αxx

∂Qa
－ ＋ ∂αyy

∂Qa

2

∂αxy

∂Qa
＋ 
2 ∂αyz

∂Qa
＋ 
2 ∂αzx

∂Qa

2

∂αyy

∂Qa
－ ＋ ∂αzz

∂Qa

2 ∂αzz

∂Qa
－ ∂αxx

∂Qa

2

.＋3

a

Δ＝ .I
γ
α－I

δ
β 

I
γ
α＋I

δ
β 

αaG′a＝－ 1
9
∂αxx

∂Qa
＋ ∂αyy

∂Qa
＋ ∂αzz

∂Qa

∂G′xx

∂Qa
＋ ∂G′yy

∂Qa
＋ ∂G′zz

∂Qa
.

δ2＝－ω 1
2

∂αxx

∂Qa
－ － ∂αyy

∂Qa

∂Ayyz

∂Qa

∂αxy

∂Qa
＋ 

＋ 

＋ 

∂Azyy

∂Qa
＋ ∂Azxx

∂Qa
－ ∂Axxz

∂Qa

∂Azxy

∂Qa

∂αyy

∂Qa
－ － ∂αzz

∂Qa

∂Axyz

∂Qa

∂αzz

∂Qa
－ － ∂αxx

∂Qa

∂Ayzx

∂Qa

∂Azzx

∂Qa

∂αyz

∂Qa
－ ∂Axzz

∂Qa
＋ ∂Axyy

∂Qa
－ ∂Ayyx

∂Qa

∂Axxy

∂Qa

∂αzx

∂Qa
－ ∂Ayxx

∂Qa
＋ 

,

.∂Ayzz

∂Qa
－ ∂Azzy

∂Qa

a

γ2＝－ 1
2
∂αxx

∂Qa
－ ∂αyy

∂Qa

∂G′xx

∂Qa
－ ＋ ∂G′yy

∂Qa

∂αzz

∂Qa
－ ∂αxx

∂Qa

∂G′zz

∂Qa
－ ∂G′xx

∂Qa

∂G′xy

∂Qa
＋ ＋ ∂G′yx

∂Qa

∂αyy

∂Qa
－ ∂αzz

∂Qa

∂G′yy

∂Qa
－ ∂G′zz

∂Qa

∂αxy

∂Qa

∂G′yz

∂Qa
＋ ∂G′zy

∂Qa

∂αyz

∂Qa

∂G′zx

∂Qa
＋ ∂G′xz

∂Qa

∂αzx

∂Qa

3＋ 

＋ 

＋ ,

a
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Polarized ROA

6-35）

Unpolarized ROA

6-36）

Other Form

6-37）

SCP Modulation

6-38）

6-39）

DCP Modulation

6-40）

6-41）

6-42）

6-43）

（b）Back Scattering

ICP Modulation

6-44）

SCP Modulation

Δ（180, R, L, u, u）＝ I
R

u－I
L

u

I
R

u＋I
L

u

＝ ． 
2

c
16 3・ ・ 3γ2＋δ2

4 3・ ＋7β245α2

Δ（90, R, R, R, L）＝ I
R

R－I
R

L

I
R

R＋I
R

L

＝ ． 
2

c
2 3・ ・ 13γ2－δ245αG′ 
2 3・ ＋13β245α2

＋ 

Δ（90, R, L, R, R）＝ I
R

R－I
L

R

I
R

R＋I
L

R

＝ ． 
2

c
2 3・ ・ 13γ2－δ245αG′ 
2 3・ ＋13β245α2

＋ 

Δ（90, R, L, L, R）＝ I
R

L－I
L

R

I
R

L＋I
L

R

＝0． 

Δ（90, R, L, R, L）＝ I
R

R－I
L

L

I
R

R＋I
L

L

＝ ． 
2

c
4 3・ ・ 13γ2－δ245αG′ 
2 3・ ＋13β245α2

＋ 

Δ（90, x, x, R, L）＝ I
x

R－I
x

L

I
x

R＋I
x

L

＝ ． 
2

c
4 3・ ・ 7γ2＋δ245αG′ 
4 3・ ＋7β245α2

＋ 

Δ（90, y, y, R, L）＝ I
y

R－I
y

L

I
y

R＋I
y

L

＝ ． 8β2

2
c・8・ δ2

3γ2

 

－ 

Δ（90, R, L, xz, xz）＝ I
R

x－I
R

z

I
R

x－I
R

z

＝ ． 
2

c
8 3・ ・ γ2＋3δ245αG′ 

8 3・ ＋β245α2

＋ ） （ 
） （ 

I
L

x－I
L

z

I
L

x－I
L

z

） （ 
） （ 

－ 
＋ 

Δ（90, R, L, u, u）＝ I
R

u－I
L

u

I
R

u＋I
L

u

＝ ． 
2

c
4 3・ ・ 13γ2－δ245αG′ 
4 3・ ＋13β245α2

＋ 

Δ（90, R, L, x, x）＝ I
R

x－I
L

x

I
R

x＋I
L

x

＝ ． 
2

c
4 3・ ・ 7γ2＋δ245αG′ 
4 3・ ＋7β245α2

＋ 
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6-45）

DCP Modulation

6-46）

6-47）

6-48）

6-49）

（c）Forward Scattering

ICP Modulation

6-50）

SCP Modulation

6-51）

DCP Modulation

6-52）

6-53）

These CIDs, however, are not usually reported, and the theoretical ROA intensity is cal-
culated by using 6-27）.

Ⅶ．Some Examples of ROA Spectra

An ROA apparatus made by BioTools Inc. in USA has been installed in our laboratory on
early December in 2003. This is the second machine commercially available in the world

Δ（0, R, L, L, R）＝ I
R

L－I
L

R

I
R

L＋I
L

R

． 0
16β2＝ 

Δ（0, R, L, R, L）＝ I
R

R－I
L

L

I
R

R＋I
L

L

＝ ． 
2

c
16 3・ ・ 

8 3・ ＋β245α2

γ2－δ245αG′ ＋ 

Δ（0, u, u, R, L）＝ I
u

R－I
u

L

I
u

R＋I
u

L

＝ ． 
2

c
8 3・ ・ 
4 3・ ＋7β245α2

γ2－δ245αG′ ＋ 

Δ（0, R, L, u, u）＝ I
R

u－I
L

u

I
R

u＋I
L

u

＝ ． 
2

c
8 3・ ・ 
4 3・ ＋7β245α2

γ2－δ245αG′ ＋ 

Δ（180, R, R, R, L）＝ 
I

R

R＋I
R

L

＝ 
＋ 

＋ 
． I

R

R－I
R

L
4 3 3・ 2 ・ 3γ2＋δ25β2－45α2

4 3・ 45α2＋7β2

c
16 ・ 

32 ・ 3γ2＋δ2
c

16 ・ 

Δ（180, R, L, R, R）＝ 
I

R

R＋I
L

R

＝ 
＋ 

＋ 
． I

R

R－I
L

R
4 3 3・ 2 ・ 3γ2＋δ25β2－45α2

4 3・ 45α2＋7β2

c
16 ・ 

32 ・ 3γ2＋δ2
c

16 ・ 

Δ（180, R, L, L, R）＝ I
R

L－I
L

R

I
R

L＋I
L

R

＝ ． 0
8 3・ ＋β245α2

Δ（180, R, L, R, L）＝ I
R

R－I
L

L

I
R

R＋I
L

L

＝ ． 
2

c
32 3・ ・ 3γ2＋δ2

4 3・ 12β2

Δ（180, u, u, R, L）＝ I
u

R－I
u

L

I
u

R＋I
u

L

＝ ． 
2

c
16 3・ ・ 3γ2＋δ2

4 3・ ＋7β245α2
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and the first in Japan. The examples of measurements are still limited and the detail inter-
pretations of the spectra are the project in near future. The followings are, therefore, very
preliminary results.

Fig. 9 shows the comparison of four types of vibrational spectra of（R）-Carvone. The
ROA spectrum of liquid sample was measured in 5mmφ liquid cell. The wavelength of the
exciting laser is 532 nm from a solid semiconductor laser. The laser power is about 300
mW, and 3000 shots in 30 minutes elapsed time.

In a relatively short time, a beautiful ROA spectrum was obtained. However, as experi-
enced in VCD spectra 1，2）of other molecules, there is no apparent relation between the
intensity of Raman band and that of ROA signal. Other than the relation of intensities, the
vibrational mode for such a compound where more than two rings are combined back on
each other is still unresolved problem in vibrational spectroscopy. Therefore, the detail
understanding of this molecule should be postponed for a certain time. On the other hand,
according to the information, the coming new version of Gaussian program package will
install an option to calculate ROA spectrum. Then, in the not-so-distant future, the ROA
spectroscopy will become a useful analytical method for chiral molecules.

We measured and analyzed the infrared and VCD spectrum and found that the OH bend-
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Fig.9 IR, VCD, Raman, and ROA spectra of（R）-Carvone 
All spectra were measured as a neat sample.



ing mode appears in dilute sample and gives fairly strong VCD signal, and stressed the
VCD spectroscopy might be a useful tool to investigate the hydrogen bonded system in
solution3）. We also interpreted the magnitudes and signs of VCD signals in terms of vibra-
tional modes4）, which will be meaningful in predicting and interpreting the VCD spectra of
the other molecules. Considering that Raman spectroscopy is a complementary method to
infrared spectroscopy, comparison of VCD and ROA spectra should be instructive. 

The molecule, 2-butanol, has 9 rotational isomers and its conformers are defined in Fig.
10. Each of their molecular structure was optimized by a theoretical method at B3LYP/6-
31＋＋G＊＊ level using Gaussian 98 program5）. The calculated Raman spectra of 9 conformers
are shown in Fig. 11, where the population abundance is decreasing from top to bottom.

Fig. 12 shows Raman and ROA spectra of several 2-alcohols different in the lengths of
alkyl chains. We will compare these spectra in the following discussions relating with mole-
cular structure and vibrational modes.

In our previous report2）, we described that the infrared and VCD spectra are roughly
classified according to the conformations due to the internal rotation angle of OH group,
that is designated by small letters in Fig. 11 such as t, g＋, or g－. On the other hand, Raman
spectra seem to be grouped according to the large letters in Fig. 11, that is the conforma-
tions due to the dihedral angle made by O（H）－C2－C3－C4（H3）bond, or in fact, the skele-
tal conformation.

Let us look at the molecular structures first. In G＋-forms, the C1（H3）－C－C－C4（H3）
skeleton is almost in coplanar and O atom sticks out of the plane. In T-forms, O（H）－C2－
C3－C4（H3）skeleton is almost in coplanar and C1 atom sticks out of the plane. On the other
hand, in G－-forms, none of five heavy atoms are in coplanar and make a part of globular
shape. In other word, the G＋ and T-forms have more elongated shape and the G－-forms
have somehow an orbiculate shape. These structural variations will make the vibrational
coupling scheme different in the different skeletal conformers.

Next we point out some vibrational mode assignments typical to conformers due to the
PED（potential energy distribution）analysis for the calculated spectra.

There are clusters of several bands making relatively strong Raman intensities around
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1500 cm－1, which correspond to the observed bands around 1456 cm－1. There appear posi-
tive ROA signals of medium intensities for all alcohols studied in the present work. These
ROA signals correspond to the left most bands for every 2-alcohol and they are assigned to
C1H3（or CH3 group attached to chiral carbon）deformation or the terminal CH3 group of
the alkyl chain.

Longer the alkyl chain elongates, stronger becomes the Raman band at around 1300 cm－1

as shown in Fig. 12. This band is assigned to the twisting mode of CH2 group attached to
the chiral center in case of 2-butanol. This band becomes more prominent in G－-forms
where the skeletal structure become more orbiculate as described above. This might an
indication of such structures for the molecules with longer alkyl chain. This point is worth
to investigate in detail. However there is no detectable ROA signals for these bands.

There are negative ROA bands in doublet with strong intensities, which start from the
1229 and 1160 cm－1 bands of 2-pentanol down continuously to 1190 cm－1 and 1153 cm－1

bands of 2-octanol. These bands are assigned to the mixture of various modes, such as CH3

rocking, C－O stretching and so on. The way of mode coupling depends on conformers, and
the assignment to a single mode is difficult. These bands have no corresponding strong
Raman bands, except the lower frequency bands show a shoulder bands on further lower
frequency bands. It is interesting that the lower ones of these two bands show an odd-even
effect in their VCD spectra as for the alkyl substituents. The molecules with even number
of carbon atoms （i.e. 2-butanol, 2-hexanol, 2-octanol） have strong, positive VCD bands,
while the molecules with odd number of carbon atoms （i.e. 2-pentanol, 2-heptanol） have
almost no VCD signals.

The Raman band at 1128 cm－1 of 2-pentanol and the corresponding bands of the other 2-
alcohols except for 2-butanol show about the same intensities and their locations are
almost constant. These bands show positive ROA signals and their intensities become far
more prominent at higher alkyl chains and in fact these are the strongest ROA bands for 2-
hexanol and higher alcohols in the observed region. The corresponding bands of 2-butanol
seem to be those at 1127 cm－1 and 1112 cm－1. The bands around here are strongly affected
by hydrogen bonding, and it is difficult to assign to a single mode.

The positive ROA band at 1034 cm－1 of 2-butanol has a medium intensity. The other alco-
hols have the corresponding bands. Their intensities do not change so much and their loca-
tions go to higher frequency a little bit quickly first, then slowly at higher alkyl chains.

It is difficult at this moment to interpret the negative ROA bands between 1000 and 900
cm－1. There is a big gap in continuity for both Raman and ROA spectral pattern between 2-
butanol and 2- pentanol. Also we have no ROA signal of 2-octanol at around 1030 cm－1 as
expected from the other 2-alcohols with shorter alkyl chains. Of course, the vibrational
modes of the finger print region is so complicated such that many local coordinates are
mixed up and it is almost impossible to describe the normal mode by a simple local coordi-
nate.
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According to the PED analysis of the calculated spectra for 2-butanol, the methyl-rock-
ing mode of the terminal CH3 group is split into two bands. One of them makes a weak
shoulder band at 917 cm－1 by mixing with C-C（or C-O）stretching, and the other compo-
nent makes a strongest band at 827 cm－1 by mixing with CH2 rocking. The former Raman
band turns out to be the strongest negative ROA signal and the latter band turns out to be
the medium positive ROA signal. In between the two bands described above, there is an
isolated band around 900 cm－1 for every conformer of 2-butanol as shown in Fig. 11. This
band is assigned to C-O stretching mode. On the other hand, the bands around 780 cm－1

are assigned to CH2 rocking mode. The detail investigation of these coupling schemes will
be needed to interpret the abnormal spectral behavior in 1000 ～ 800 cm－1 spectral region.

It is interesting to look the change of spectral pattern in 500～200cm－1 spectral region.
The medium Raman band at 507 cm－1 of 2-butanol give a negative ROA signal. This band is
assigned to skeletal deformation with the chiral carbon atom as an apex. The very weak
Raman band at 475 cm－1 of 2-butanol give a positive ROA signal of medium intensity. This
band is assigned to the deformation of C1H3 group as a whole against the skeletal structure
made of O-C-C bond with the chiral carbon atom as a center. These two bands disappear at
higher alkyl chains. Instead, a lower frequency band shows up at 338 cm－1 for 2-pentanol,
and the frequencies of the corresponding bands decrease at higher alkyl chains. These
bands are assigned to the skeletal deformation around the chiral center and C3C4C5 bend-
ing. Unfortunately, there are no ROA signals for these bands.

The descriptions so far made on spectral behavior will be helpful in the analysis of the
other molecules. The combined analysis of Raman and ROA spectra will also useful for the
interpretation of molecular conformation in solution. As is shown in Fig.12, the Raman and
ROA spectra of larger molecules become rather simple regardless of the increased number
of the normal vibrations. This is an advantage in the study on large molecular system such
as biological molecules if some key bands are in hand. The research for finding such key
bands is now at the starting point.
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