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滑降シンプレックス法による成長曲線からの大気パラメータの決定
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The Determination of Atmospheric Parameters 
of Curve-of-Growth by the Downhill Simplex Method
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ABSTR ACT

We made the program which determine the atmospheric parameters from the curve-of-growth by the downhill sim-
plex method due to Nelder and Mead. This program determines the four variables, ∆ x, ∆ y, θex, and log 10 2 α as the
best point of the four variables from the starting set of 5 points of the four variables, where ∆ x is a difference
between an empirical curve-of-growth and a theoretical curve-of-growth in the direction parallel to the abscissa and
∆ y is a difference between an empirical curve-of-growth and a theoretical curve-of-growth in the direction parallel to
the ordinate. The objective function is taken to be the variance of lines in curve-of-growth in the direction parallel to
the abscissa. This program is the combination between the program of the above downhill simplex method by Sprott
and the program of the method 2 for curve-of-growth analysis by Yoshioka.

The effectiveness of this program was tested by comparing the results by this program with that by the program of
the method 2 by Yoshioka. The data used for the comparison are those for 86 lines of Fe Ⅰ of HD187203. The follow-
ing conclusions were drawn from the test.
1) The best point is obtained for the tolerance values of the objective function between 0.001 to 0.00001.
2) The best point depends on the starting set. But, the uncertainty due to the starting set is small in comparison with

the one due to other cause in the curve-of-growth analysis.
3) This program is an effective method for the curve-of-growth analysis. In comparison with the program of the

method 2 by Yoshioka, this program reaches the four variables in quite short steps and in quite a short time.

要　旨

われわれは、NelderとMeadによる滑降シンプレックス法を適用して成長曲線から大気パラメータを求めるプログ
ラムを作成した。本プログラムは、∆ x、∆ y、θex、and log 10 2 αの４つの変数とする４次元空間中の５個の頂点から
成るシンプレックスにおいて、出発点となるシンプレックスから最適の点の座標として４変数を求めるものである。
なお、∆ xは観測された成長曲線と理論成長曲線の横軸の差を意味し、∆ yは両成長曲線の縦軸の差を意味する。こ
こで、目的関数はプロットされた吸収線の横軸上のちらばりの分散値とした。本プログラムは、Sprottが作成した滑
降シンプレックス法のプログラムと吉岡が作成した成長曲線法解析の方法２のプログラムを組み合わせたものであ
る。
われわれは、本プログラムと吉岡の方法２のプログラムの結果を比較することにより、本プログラムの有効性を調

べた。比較に使われたデータは、HD187203の86本のFeⅠの吸収線である。そして、次の結論を得た。
1）許される有効数字内での最適の値は、滑降シンプレックス法での許容相対誤差を0.001～0.00001にとれば得られ
る。

2）最適の値は、出発点となるシンプレックスの選び方によって変わる。しかしその差は、成長曲線法として許され
る範囲内にある。

3）本プログラムは、吉岡の方法２のプログラムと比べて、かなり短いステップで得られるので、かなり時間を短縮
でき、有効な方法と言える。
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Ⅰ．Introduction

A curve-of-growth analysis is one the methods
which are used for the analysis of stellar atmospheres.
The other method which is mainly used is a model
atmosphere analysis.  Since detailed distribution of
physical quantities such as temperature and pressure
and so on are taken into account in a model atmos-
phere analysis, it is called fine analysis.  It is used
when accurate observational data are available and
the nature of stellar atmosphere is known to a good
approximation.

A curve-of-growth analysis is usually used when
accurate observational data are not available or there
is not enough knowledge about the nature of a stellar
atmosphere.  In this method, one-layer approximation
is made, i. e., it is assumed that there exists a specific
value for a physical quantity of the atmosphere such
as temperature, pressure and density.  A curve-of-
growth is used in this method.  A curve-of-growth is a
graphical representation of the relation between the
logarithm of an equivalent width of an absorption line,
log 10 W, and the logarithm of a number density of
absorbing atoms, N, times an oscillator strength, f,
log 10 Nf.  The equivalent width of a line is the width of
the rectangular profile for which the height is equal to
the continuum level near the line and the area is equal
to that of the line.  The equivalent width divided by
wavelength of the line, W/λ, is often used instead of
W, and some multiplicative factor is often added to Nf.
We obtain by this method a representative quantities
of atmosphere, for example, electron pressure, gas
pressure, ionization temperature, and excitation tem-
perature, Tex, together with chemical composition.
This method is also called coarse analysis.
Furthermore, it is also called an absolute curve-of-
growth analysis or an absolute coarse analysis in
order to distinguish it from the analysis mentioned
below.

In cases where accurate values for oscillater
strength are not known, the values of the abscissa
log 10 Xs of the curve-of-growth for the standard star
for which the physical quantities and the chemical
composition of the atmosphere are already known are
plotted instead of log 10 Nf.  In this case, the relative
values to the standard star for the physical quantities
and the chemical composition are obtained instead of
the absolute values.  This method is called differential
curve-of-growth analysis or differential coarse analy-
sis.

Ⅱ．Procedures by Using a Compter Done to
Date

The curve-of-growth analysis has conventionally
been applied by eye measure.  There is a fear that the
results obtained by eye measure depend on the subjec-
tivity of an analyzer.  Moreover, an objective estimate
of error cannot been made by eye measure.  The
curve-of-growth by using a computer have been
applied in order to overcome the above weak points.

For example, Tech (1971)1) has done a differential
curve -of-growth analysis for BaⅡ star ζ Cap, using ε
Vir (G8Ⅲ type star) as a standard star.  In this analy-
sis, he determined the differential reciprocal exci-
ataion temperature, ∆θex (θex＝5040/Tex), relative to the
standard star by the minimum-sigma method, using a
computer.  Powell (1971)2) has made computer pro-
grams for a differential curve-of-growth analysis of
solar-type stars.

Ⅱ-1．The Minimum-Sigma Method by Tech
The minimum-sigma method by Tech (1971)1) are

made in the following way.  First a preliminary value
for ∆θex is chosen and the value, log 10 Xrel is calculated
according to the following expression for each line of
a given element at the same ionization stage,

log 10 Xrel＝log 10 Xs－∆θexχ l, (1)
where log 10 Xs is the abscissa of a curve-of-growth of a
standard star and χ l is the excitation potential of the
lower energy level.  Then a mean curve of cubic or
quartic polynomial is calculated by the least-squares
method to give the best representation of log 10 Xrel as a
function of log 10 (W/λ), and the standard deviation σ of
points from the mean curve in a direction parallel to
the log 10 Xrel axis is calculated.  By repeating the above
calculation for several values of ∆θex, a correlation
between σ and ∆θex is obtained.  A graph of this corre-
lation is generally a smooth curve with a unique mini-
mum.  The adopted value of ∆θex is taken to be that
value for which σ is least.  Using this value of ∆θex, the
empirical curve-of-growth is reconstructed by plot-
ting for each line log 10 Xrel along the abscissa and
log 10 (W/λ) along the ordinate.  Then, this empirical
curve-of-growth is fitted to the theoretical curve-of-
growth and the horizontal shift of this empirical curve
onto the theoretical one gives the quantity which is
related to the ratio of the number density of the ele-
ment at the ionization stage concerned between the
star being analyzed and the standard star.

The theoretical curve for ζ Cap was that for pure
absorption in a Milne-Eddington atmosphere calculat-
ed by Hunger (1956)3) with damping parameter
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log 10 (2α)＝－2.5 and with log 10 (c/2RcVD)＝4.63, where c
is the speed of light and VD is the Doppler velocity; Rc

is the limiting central depth for strong lines.  In the
paper by Tech (1971)1), he wrote, “The theoretical
curve that offers the best fit to the majority of the
empirical curve-of-growth for ζ Cap, and the one that
has been adopted, is that for pure absorption in a
Milne-Eddington atmosphere…”, but he did not
describe the details of the fitting, e. g. the criterion of
the best fit.

The strong points of this procedure, which is the
reversal of the weak points of the conventional proce-
dure, are as follows: 1) Each line is treated separately
and separate weight can be applied to each line; 2)
Correct excitation potentials rather than mean values
of excitation ranges are taken into account; 3) It gives
dispassionately reproducible results and objective
estimates of error.

On the other hand, this procedure has the following
weak points: 1) Great care must be exercised in assur-
ing that no widely discordant lines are used; 2) Since
lines on the flat or the damping portions of the curve-
of-growth will dominate the value of σ and mask the
variation due to ∆θex, such lines are generally excluded
in this analysis, which brings about ambiguity to the
results; 3) There is not a guarantee that the mean
curve from which the σ values are calculated really
represents the distribution of points adequately.

Ⅱ-2．The Procedure Powell
The programs made by Powell (1971)2) are based on

the formulae by Pagel (1964)4), that is, the abscissa in a
curve-of-growth log 10 X is normalized so that log 10 X＝
log 10 (W/λ) for sufficiently weak lines, and for neutral
lines, the quantity plotted along the abscissa in an
empirical curve-of-growth is not the right side of
equation (2) but log 10 XS＋∆θex∆χ, where ∆χ is the dif-
ference between the ionization potential and the lower
excitation potential.

In this procedure, the ∆θex value and the vertical
and horizontal shifts which fit an empirical curve to a
theoretical one are first determined, and then the
shape of the theoretical curve which fits best to the
empirical one, i. e. the damping parameter of the theo-
retical one is determined.

In the determination of the ∆θex value and these ver-
tical and horizontal shifts, only the lines which are on
the liner portion or on the knee of the flat portion of
the curve-of-growth are used, because the ∆θex value
determined from these lines depends only slightly on
the shape of the theoretical curve and is not affected
very much by the vertical shift adopted in the fitting.

The determination is done in the following iterative

way.  First, an initial value of ∆θex is estimated and the
empirical curve-of-growth is constructed.  Secondly,
the empirical curve is fitted to the theoretical one by
van der Held (1931)4) with a damping parameter of α＝
0.05.  Van der Held curves-of-growth are those for
pure absorption in a Schuster-Schwarzschild atmos-
phere and Cowley and Cowley (1964)5) has found that
an absolute curve-of-growth for the sun constructed
by them fits best to the van der Held curve with α＝
0.05.  Thirdly, the theoretical curve fitted to the
empirical one is further shifted horizontally in order
to normalize it so that it passes through the points of
(－6.5, －6.5), and the value of log 10 X corresponding to
log 10 (W/λ) for the star being analyzed is read off for
each line from this normalized curve.  Lastly, a new
value of ∆θex is found from a least-squares solution to
the relation,

[X]＝[A]＋∆θex∆χ, (2)
where square bracket represents the logarithmic dif-
ference of the denoted quantity between the star
being analyzed and the sun; A is the number ratio of a
relevant element and to hydrogen uncorrected for ion-
ization.  The above process is repeated until a differ-
ence between successive estimate of ∆θex becomes less
than 0.005.

Adopting the values of ∆θex and of the vertical and
horizontal shifts thus determined, the final value of α
is determined by obtaining the best fit of the empirical
curve to a family of van der Held curves on the condi-
tion for a least-squares fit in a direction parallel to the
log 10 (W/λ) axis for all the points in the curve-of-
growth.  If this value of α is more than a factor of ten
greater than or less than 0.05, the above of the deter-
minations of ∆θex and the shifts is repeated using the
new value of α.

In the above process of the determination of ∆θex

values etc.. the fitting of the van der Held curve to the
empirical one is done on the assumption that the val-
ues for the abscissa are accurately known and the val-
ues for the ordinates have a Gaussian error distribu-
tion.  Consequently, the fitting is done on the condi-
tion for a least-squares fit in a direction parallel to the
log 10 (W/λ) axis.  This fitting is done in the following
way which is also iterative.  First, the initial value of
the vertical shift ∆y i is taken to be zero and the initial
value of the horizontal shift ∆ x i is taken to be the
mean value of maximum and minimum values of
log 10 (W/λ)－log 10 XS－∆θex∆χ.  Secondly, values of R
are calculated for two values ∆x i＋0.15 and of ∆x i－
0.15, where R is the derivative with respect to ∆x of of
the sum of the squares of the deviation in the ordinate
of the empirical curve from the van der Held curve
which is shifted horizontally by ∆x and shifted verti-
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cally by ∆y.  Thirdly, the ∆x value corresponding to
R＝0 is estimated from the two R values and from the
above two values by assuming that a linear relation
between R and ∆x exists.  Lastly, using this ∆x value
instead of ∆x i, a new estimation of the ∆x value such
that R＝0 is done.  This iteration is continued until
the difference between successive estimates of ∆x is
less than 0.0002.  Using the final ∆x value, a new value
of ∆ y is estimated as aleast-squares solution in a
direction parallel to the ordinate.  The whole process
is repeated until the difference between successive
estimates of ∆y is less than 0.00002.

The strong points of this procedure are the same as
described for the minimum-sigma method.  The weak
points of this procedure also are the same as the mini-
mum-sigma method, except for the third point.  There
is, however, another weak point that there is a fear of
divergence in the iterative process.

Ⅱ-3．The Procedure of the Method of Type 2 by
Yoshioka

Yoshioka (1987)6) (Hereafter referred to as PaperⅠ)
developed a new method.  In the new method, the
strong points were made use of and the weak points
were overcomed.  In Paper Ⅰ, two kinds of procedure
were developed, which are called the method of type 1
and of type 2 respectively in Paper Ⅰ, and the superi-
ority of the method of type 2 has been indicated.

In the method of type 2, the values of ∆θex is deter-
mined simultaneously with the damping constant and
the vertical shift, where the theoretical curve fitted to
the empirical curve is that for pure absorption in the
Milne-Edington atmosphere calculated by Hunger
(1956)3).  For the Milne-Eddington atmosphere the ver-
tical shift equals to log 10 (c/2RCVD).  The determination
is done in the following way.  First, the value of damp-
ing parameter log 10 2α (2α＝λΓ/2πVD) is settled, where
Γ is the damping constant.  Secondly, the value of ∆θex

is determined as least-squares solution in the direc-
tion parallel to the abscissa for various values of
log 10 (c/2RCVD).  Thirdly, the log 10 (c/2RCVD) value and
the corresponding value of ∆θex which give a minimum
value of the standard deviation σtemp of the ∆θex value
are selected.  The above process is repeated for vari-
ous values of log 10 2α, and the log 10 2α and the corre-
sponding values of ∆θex and log 10 (c/2RCVD) for which
the σtemp value is minimum are adopted as the final val-
ues for these quantities.  In the above process, a gra-
dient of the theoretical curve-of-growth for the ordi-
nate of a line is taken into account as a weight for a
least-squares solution so that the lines on the linear
and damping parts of the curve-of-growth are given
heavier weight than those on the flat part of the

curve-of-growth.
The strong points of this procedure are the same as

described for the minimum-sigma method by Tech
(1971)1) and for the procedure by Powell (1971)2).  The
weak points of both of the procedures, i. e., the ambi-
guity in the use of lines and the inconsistency in the
use of curve-of-growth are overcomed in this proce-
dure, for this procedure uses all the lines and the
same curve-of-growth are used for the determination
of log 10 2α, VD, and∆θex.

Ⅲ．New Procedure by Using the Downhill
Simplex Method

In this paper, we made the program which simpli-
fies this procedure.  We reports the approach and the
result of this program.

The procedures above described can be regarded as
one of optimization problems where the optimal solu-
tion is the set of four variables, ∆ x, ∆ y, ∆θex, and
log 10 2α.  The objective function in our problem which
is minimized by the optimal solution can be selected
according the criterion of agreement between empiri-
cal curve-of-growth and theoretical one.  For example,
the variance of lines in curve-of-growth in the direc-
tion parallel to the ordinate is selected as the objective
function in the the procedure by Powell (1971)2).  On
the other hand, the variance of lines in curve-of-
growth in the direction parallel to the abscissa is
selected as the objective function in method of type 2
by Yoshioka (1987)6).

We made the program which solves this optimiza-
tion problem by the downhill simplex method due to
Nelder and Mead7)(hereafter referred to as DSM).
DSM is the method which finds approximately the
minimum of an objective function of more than one
independent variables without constraints.  DMS
requires only function evaluations and it does not
require derivatives.  DMS is widely used in physical
sciences and in engineerings.

Ⅲ-1．The Process of the Downhill Simplex Method
In DSM, a simplex is the geometrical figure consist-

ing, in N dimensions (or the number of independent
variables), of N＋1 points (or vertices) and all their
interconnecting line segments, polygonal faces.  In
DSM, the determination of solution is done in the fol-
lowing iterative way.
[1] It starts with N＋1 points, where these points are

indicated as xi (i＝1, 2, …, N＋1), defining an initial
simplex.

[2] These points are put in order of ascending values
of f (xi) where f is the objective function, and the fol-
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lowing inequality holds,
f (x1)≦ f (x2)≦…≦ f (xN+1). (3)

[3] The centroid of points〈x〉of the simplex without
xN+1 is calculated by the following expression,
〈x〉＝Σn

l Xi/n. (4)
Then, the reflection point xr is calculated by the fol-

lowing expression,
xr＝〈x〉＋ρ（〈x〉－xN+1), (5)

where ρ is taken to be 1 in this study.
[4] The point xN+1 is replaced by the point xr in the case

where the following inequality holds,
f (x1)≦ f (xr)≦ f (xN). (6)

The new set of points are put in order of ascending
values of f (xi) as is done in the step [2].  Then, we go to
the terminating step [13].

When the inequality (6) does not holds, we go to the
step [5].
[5] We go to the step [6] in the case where the follow-

ing inequality holds,
f (xr)＜ f (x1). (7)

When the following inequality holds,
f (xN)＜ f (xr)＜ f (xN+1), (8)

we go to the step [8].
When the following inequality holds,

f (xN+1)＜ f (xr), (9)
we go to the step [10].

[6] The expansion point xe is calculated by the follow-
ing expression,

xe＝〈x〉＋χ（〈x〉－xN+1), (9)
where χ is taken to be 2 in this study.

[7] The point xN+1 is replaced by the point xe in the
case where the following inequality holds,

f (xe)＜ f (xr). (10)
The new set of points are put in order of ascending

values of f (xi) as is done in the step [2].  Then, we go to
the terminating step [13].

When the inequality (10) does not holds, the point
xN+1 is replaced by the point xr, and the new set of
points are put in order of ascending values of f (xi).
Then, we go to the terminating step [13].
[8] The outside contraction point xoc is calculated by

the following expression,
xoc＝〈x〉＋γ（xr－〈x〉）, (11)

where γ is taken to be 0.5 in this study.
[9] The point xN+1 is replaced by the point xr in the case

where the following inequality holds,
f (xoc)＜ f (xN+1). (12)

Then, the point xN+1 is replaced by the point xoc and
the new set of points are put in order of ascending val-
ues of f (xi).  Then, we go to the terminating step [13].

When the inequality (12) does not holds, we go to
the step [12].
[10] The inside contraction point xic is calculated by

the following expression,
xic＝〈x〉＋γ（xN+1－〈x〉）, (13)

where γ is taken to be 0.5 in this study.
[11] The point xN+1 is replaced by the point xic in the

case where the following inequality holds,
f (xic)＜ f (xN+1). (14)

The new set of points are put in order of ascending
values of f (xi).  Then, we go to the terminating step
[13].

When the inequality (14) does not holds, we go to
the step [12].
[12] All the points x i except for the point x 1 are

replaced by the shrink points xsi which are calcu-
lated by the following expression,
xsi＝x1＋σ(xi－x1), (15)

where σ is taken to be 0.5 in this study.  The new
set of points are put in order of ascending values of
f (xi). Then, we go back to the step [3].
[13] The program terminates in the case where the

relative fractional range from the highest value
f (xN+1) to the lowest value f (x1) is smaller than some
tolerance ftol, i. e., in the case where the following
inequality holds,
ftol＜2| f (xN+1)－f (x1)|/| f (xN+1)＋f (x1)|. (16)

The program pauses in the case where the number
of iteration ITER exceeds some tolerance ITMAX, i. e.,
in the case where the following inequality holds,

ITER＞ITMAX. (17)
In the cases where neither the inequality (16) nor

the inequality (17) does not hold, we go to the step [3].

In the above process of DSM, the minimum value of
f (x) and the corresponding values of variables of N
dimensions are determined as the value of f (x1) and
the values of the point x1 at the terminating step [13],
respectively.

Ⅲ-2．The Results by Using Our Program
We made the program which selects the best set of

four variables, ∆x, ∆y, ∆θex, and log 10 2α.  The determi-
nation of the best set is done by DSM of 4 dimensions
where the objective function is the variance of lines in
curve-of-growth in the direction parallel to the abscis-
sa as it is selected in method of type 2 by
Yoshioka(1987)6).  Our program is the combination
between the program of DSM by Sprott7) and the pro-
gram by Yoshioka(1987)6).  The latter program calcu-
lates the value of the objective function for a given set
of four variables, ∆x, ∆y, ∆θex, and log 10 2α.

We have tested the effectiveness of our program by
comparing the result by our program with that by the
program by Yoshioka(1987)6).  The data used for the
comparison are that for Fe Ⅰ lines of HD187203
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which is a supergiant with F8 type.  The number of
the FeⅠ lines is equal to 86.  An absolute curve-of-
growth analysis is done for the above data by the pro-
gram by Yoshioka (1987)6) and the following set of four
variables, ∆x, ∆y, θex (instead of ∆θex in the case of an
absolute curve-of-growth analysis) and log 10 2α is
obtained; ∆ x＝－3.075, ∆ y＝4.63, θex＝1.02, and
log 10 2α＝－1.85.  The value of the objective function f
is equal to 2.435970256.

We have obtained the best sets of four variables by
our program, altering the starting set of 5 points of a
simplex and the ftol value.  The ranges of the starting
values which were taken in this dtudy are as follows,
∆ x＝－3.40～－2.60; ∆ y＝4.30～5.10; θex＝0.60～1.40;
log 10 2α＝－1.40～－2.20.  These ranges were chosen
so that they include the above values obtained by the
program by Yoshioka (1987)6).  The ftol values taken in
this study are 0.1～1×10－9.

For example, for the following starting set ①,
∆x i＝－2.90－0.05i, ∆y i＝4.80－0.05i, θexi＝1.15－0.05i,
and log 10 2αi＝－2.00＋0.05i, where i＝1, …, 5, and for
ftol＝1×10－9, the following best point is obtained;
∆x＝－3.034, ∆y＝4.67, θex＝1.02, and log 10 2α＝－1.87.
The corresponding f and ITER values are equal to
2.455285751 and 63, respectively.

On the other hand, for the following starting set ②,
∆x i＝－2.40－0.20i, ∆y i＝5.30－0.20i, θexi＝1.60－0.20i,
and log 10 2αi＝－2.40＋0.20i, and for ftol＝1×10－9, the
following best point is obtained; ∆ x＝－2.988, ∆ y＝
4.71, θex＝1.01, and log 10 2α＝－1.81.  The correspond-
ing f and ITER value are equal to 2.646665165 and 65.

As is exemplified above, the best point depends not
only on the ITER value but also on the starting set.
The starting set ③ that gives the best point with the
smallest f value are as follows; ∆ x i＝－2.90－0.05i,
∆ y i＝4.80－0.05i, θexi＝1.60－0.20i, and log 10 2αi＝－
2.40＋0.20i, and the best point and corresponding f
and ITER value are as follows; ∆x＝－3.046, ∆y＝4.65,
θex＝1.02, and log 10 2α＝－1.82, 2.441517739 and 71.
This set is nealy equal to that obtained by the program
by Yoshioka (1987)6).

The best point depend also on the combination of
the starting point even when it is equal as a set.  For
example, for the following starting set ④, ∆ x i＝－
2.40－0.20i, ∆ y i＝5.30－0.20i, θexi＝1.60－0.20i, and
log 10 2αi＝－1.20－0.20i, the following best point is
obtained; ∆ x＝－2.988, ∆ y＝4.71, θex＝1.01, and
log 10 2α＝－1.79.  The corresponding f and ITER value
are equal to 2.642037475 and 70.  On the other hand,
for the following starting set ⑤, ∆ x i＝－2.40－0.20i,
∆ y i＝4.10＋0.20i, θexi＝1.60－0.20i, and log 10 2αi＝－
1.20－0.20i, the following best point is obtained;
∆x＝－2.989, ∆y＝4.69, θex＝1.01, and log 10 2α＝－1.79.

The corresponding f and ITER value are equal to
2.542638882 and 71.  The starting sets ②, ④, and ⑤
are equal as a set, but the best set differ slightly.

Ⅳ．Conclusions and Discussion

The following conclusions are drawn from the
above calculation.
1) The best points given above are the result for ftol＝

1×10－9, but the same results are already obtained
for the ftol values between 0.001～0.00001 in the
case where the significant figure of the values of
∆y, θex, and log 10 2α is two and the significant figure
for the ∆x value is three.

2) The best point depends on the starting set.
According to the starting set, the best points of ∆x,
∆y, θex, and log 10 2α differs by ±0.05, ±0.06, ±0.01,
and ±0.09, respectively.  The θex value is insensitive
to the best set, and the ∆x value is relatively insen-
sitive to the best set.  The ∆y and log 10 2α values are
more sensitive to the starting set than the ∆x and
θex values.  However, these uncertainties are small
in the curve-of-growth analysis.  The uncertainty of
±0.01 in θex value is small, and the uncertainty of ±
0.05 in abundance in logarithmic scale which origi-
nates from that in ∆ x value is also small.  The
uncertainty of ±0.06 in Doppler broadening in loga-
rithmic scale which originates from that in ∆ y

value is small.  The uncertainty of ±0.09 in log 10 2α
value is also small.

3) There are some starting sets which does not con-
verge to the best set.  For example, for the following
starting set, ∆ x i＝－2.40－0.20i, ∆ y i＝4.80－0.05i,
θexi＝1.60－0.20i, and log 10 2αi＝－2.00＋0.05i, it does
not converge in the case where the ftol value is
smaller than 0.00007.  However, in these cases, the f
value converges the same value that the starting set
converges for the ftol value which is larger by more
than a factor of ten than that which does not give a
convergent set.

4) In conclusion from the above description, our pro-
gram is an effective method for the curve-of-
growth.  In comparison with the program by
Yoshioka (1987)6), our program reaches the ∆x, ∆y,
∆θex, and log 10 2α values in quite short steps and in
quite short time with acceptable accuracy.

The following problems are left for the future.
1) The variance of lines in curve-of-growth in the

direction parallel to the abscissa is selected as the
objective function in this study.  It is interesting
that this study is done in the case where other vari-
ations are selected as the objective function.
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2) It is interesting that DMS is applied not only in the
curve-of-growth method but also in fine analysis.

3) It may be effective to apply the method such as the
simulated annealing method in order to avoid con-
verging in the local minimum before converging in a
global minimum as in our case.
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