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The Determination of Atmospheric Parameters of Curve-of-Growth
by the Simulated Annealing Method
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ABSTRACT

We made the program which determines the atmospheric parameters from the curve-of-growth by the Simulated
Annealing Method. This program determines the four variables, Ax, Ay, f, and logw2a as the best set of the four
variables from the staring set of 5 points of the four variables, where Ax is a difference between an empirical curve-
of-growth and a theoretical curve-of-growth in the direction parallel to the abscissa and Ay is a difference of the two
curves in the direction parallel to the ordinate. The objective function is taken to be the variance of lines in curve-
of-growth in the direction parallel to the abscissa. This program is a modification of the program of the Simulated
Annealing method by Press et al. (1992), which uses a program of the Downhill Simplex Method.

The effectiveness of this program was tested by comparing the results by this program with those by the program
of the method by Yoshioka and by the program of the Downhill Simplex Method by Yoshioka. The data used for the
comparison are those for 86 lines of Fe I of HD187203. The following conclusions were drawn from the test.

1) This program is an effective method for the curve-of-growth analysis. In comparison with the program of the
method by Yoshioka, this program reaches the four variables in quite short steps and in quite a short time. This
program reaches the four variables in a similar time to that by the program of the Downhill Simplex Method.

2) In this program, the values of objective function corresponding to the best set is a little smaller than those by the
program of the Downhill Simplex Method, when appropriate values of parameters of this program are selected.

3) The best set of the four variables, as well as the program by the Downhill Simplex Method, depends on the
starting set. Judging on a standard of uncertainty in the curve-of-growth analysis, however, the uncertainty due
to the starting set is small.
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I. Introduction

A curve-of-growth analysis is one of the methods
which are used for the analysis of stellar photo-
spheres. The other method which is mainly used is a
model atmosphere analysis. Since detailed distribution
of physical quantities such as temperature and pres-
sure and so on are taken into account in a model atmo-
sphere analysis, it is called a fine analysis. It is used
when accurate observational data are available and
the nature of stellar photosphere is known to a good
approximation.

A curve-of-growth analysis is usually used when
accurate observational data are not available or there
is not enough knowledge about the nature of a stellar
photosphere. In this analysis, one-layer approxima-
tion is made, 1.e., it is assumed that there exists a spe-
cific value for a physical quantity of the photosphere
such as temperature and pressure.

A curve-of-growth is a graphical representation of
the relation between the logarithm of an equivalent
width of an absorption line, logiwl¥, and the logarithm
of a number density of absorbing atoms, [V, times an
oscillator strength, £, times an statistical weight, g,
logugfN. The equivalent width of an absorption line is
the width of the rectangular profile for which the
height is equal to the continuum level near the absorp-
tion line. The equivalent width divided by the wave-
length of the absorption line, 4, W/A is often used in-
stead of W, and some multiplicative factor C, is often
added to gfN. We obtain by this method the represen-
tative quantities of a photosphere, for example, elec-
tron pressure, gas pressure, micro-turbulent velocity,
ionization temperature, and excitation temperature,
Tex, together with chemical composition. This analysis
is also called coarse analysis.

In cases where accurate values for oscillater
strength are not known, the values of the abscissa of
the curve-of-growth, logwX, for a standard star are
plotted instead of logwgfN or logwgfNC. The standard
star is the star for which the physical quantities and
the chemical composition of the photosphere are al-
ready obtained. In this case, the relative values to the
standard star for the physical quantities and the
chemical composition are obtained instead of the abso-
lute values. This analysis is called a differential cueve-
of-growth analysis or a differential coarse analysis.

I. Procedure by Using a Computer Done
to Date

The curve-of-growth analysis has conventionally

been done by eye measure. There is a fear that the re-
sults obtained by eye measure depend on the subjec-
tivity of an analyzer. Moreover, an objective estimate
of an error cannot been made by eye measure. The
curve-of-growth by using a computer have been ap-
plied in order to overcome the above weak points.

For example, Tech (1971)" has made a differential
curve-of-growth analysis for Ball star { Cap, using ¢
Vir as a standard star, he determined the differential
reciprocal temperature, Afe (0e=5040/Te) relative
to the standard star by the minimum-sigma method,
using a computer. Powell (1971)” has made a comput-
er program for a differential curve-of-growth analy-
sis of solar-type stars.

The detailed explanations for these methods are de-
scribed in the original papers or in the paper by Yosh-
ioka (2008)”. We describe in this paper an outline and
strong and weak points of these methods.

In the minimum-sigma method, several values of
ABf are chosen and the abscissa of curve-of-growth,
logX:a is taken according to the following expression,

longrcl:longs_A@ox)(l, (1)
where logXs is the abscissa of a curve-of-growth of a
standard star and y: is the excitation potential of the
lower levels of a absorption line. Then, a theoretical
curve-of-growth is fitted to the above empirical
curve-of-growth, and the standard deviation ¢ of the
empirical curve-of-growth from the theoretical
curve-of-growth in the direction parallel to the ab-
scissa is calculated. By repeating the above procedure
for several values of 40, a correlation between ¢ and
Af is obtained. A graph of this correlation is general-
ly a smooth curve with a unique minimum. The adopt-
ed value of A8 is taken to be the value for which o
takes the minimum value. Using this value of 468.x, the
empirical curve-of-growth is constructed by plotting
for each line logwX: along the abscissa and logiW/A
along the ordinate. This empirical curve-of-growth is
used to obtain the other representative quantities of a
photosphere.

The strong points of this procedure, which is the re-
versal of the weak points of the conventional proce-
dure, are as follows : 1) Each line is treated separate-
ly and separate weight can be applied to each line ; 2)
Correct excitation potential rather than mean values
of excitation potential are taken into account ; 3) It
gives dispassionately reproducible results and objec-
tive estimates of error. On the other hand, this proce-
dure has the following weak points : 1) Great care
must be exercised in assuring that no widely discor-
dant lines are are used ; 2) Since lines on the flat part
or on the damping part of a curve-of-growth will
dominate the value of ¢ and mask the variation due to
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the variation of A0, such lines are excluded in this
analysis, which brings about ambiguity to the re-
sults ; 3) There is not a guarantee that a theoretical
curve-of-growth from which the value o is calculated
really represents the distribution of points adequately.

According to the computer program made by Pow-
ell (1971)” the Af value and the vertical and the hor-
izontal shifts which fit an empirical curve-of-growth
to a theoretical one are first determined, and then the
shape of the theoretical curve, i.e. the damping param-
eter of the curve is determined. In the determination
of the A8 value and the vertical and the horizontal
shifts, only the lines which are on the linear part or on
the knee of the flat part of the curve-of-growth are
used, because the A6 value which is determined from
these lines depends only slightly on the shape of the
theoretical curve and is not affected much by the ver-
tical shift adopted in the fitting. The determination of
the A8.. value and the vertical and the horizontal
shifts is done in the following iterative way. First, the
empirical curve-of-growth is constructed adopting
the A8 value. Secondly, the empirical curve is fitted
to the theoretical curve. Thirdly, this theoretical
curve is shifted horizontally in order to normalize it so
that the value of abscissa, logiX, and the value of ordi-
nate, logwlW/A, agrees for weak lines. Then, the value
of logwX corresponding to logiwl¥/A for the star ana-
lyzed is read off for each absorption line from this nor-
malized theoretical curve. Lastly, a new A6 value is
found from a least squares solution to the relation,

[(X]=[A] A0y, 2)
where square bracket represents the logarithmic dif-
ference of the denoted quantity between the star ana-
lyzed and the standard star ; A is the number ratio of
of a relevant element and to hydrogen uncorrected for
ionization. The above iterative process is repeated un-
til a difference between successive estimate of A6 be-
comes less than the convergence tolerance (=0.005).
Adopting the values of A6, and of the vertical and the
horizontal shifts thus determined, the final value of
damping parameter of the curve-of-growth is deter-
mined by obtaining the best fit of the empirical curve
on the condition for a least—-squares fit in a direction
parallel to the ordinate. If the difference between this
value of damping parameter and the previous value of
the theoretical curve which is used to determine the
Afe value and the vertical and the horizontal shifts,
the whole process is repeated using the new value of
damping parameter.

The strong points of this procedure are the same as
described for the minimum-sigma method. The weak
points of this procedure also are the same as the mini-
mum-sigma method, except for the third point. There

are, however, other two weak points : 1) There is a
fear of divergence in the iterative process ; 2) The de-
termination of the values of A8, and of the vertical
and the horizontal shifts is done on the condition for a
least-squares fit in a direction parallel to the abscissa,
while the determination of the value of damping pa-
rameter is done on the condition for a least-squares fit
in a direction parallel to the ordinate, which lacks con-
sistency.

Yoshioka (1987)" developed a new procedure. In
the new procedure, the determination of the four val-
ues of A6, damping parameter, and vertical and hori-
zontal shifts is done in the following way. First, the
value of damping parameter is given for a theoretical
curve-of-growth. Secondary, the theoretical curve is
fitted to the empirical curve and the values A6, and
horizontal shift are determined as least-squares solu-
tion in the direction parallel to abscissa for various val-
ues of vertical shift. Thirdly, the value of vertical shift
and the corresponding values of A8 and horizontal
shift which gives a minimum value of standard devia-
tion, owmp, of the A0« value are selected. The above
process is repeated for various values of damping pa-
rameter, and the four values for which the gwmy value
takes the minimum value are adopted as the final val-
ues. In the above process, a gradient of the theoretical
curve-of-growth for the ordinate of a line is taken into
account as a weight for the least-squares solution so
that the lines on the linear and damping parts of the
curve-of-growth are given heavier weight than those
on the flat part of the curve, because the former lines
gives a larger difference between theoretical and em-
pirical curve-of-growths for the same value of error
in the ordinate.

The strong points of this procedure are the same as
those of the minimum-sigma method and of the proce-
dure by Powell (1971)” . The weak points of both of
these procedures, i.e., the ambiguity in the use of lines
and the inconsistency in the use of curve-of-growth
are overcome in the procedure by Yoshioka (1987)",
because this procedure uses all the lines which belong
to those on the flat and damping parts of curve-of-
growth as well as on the linear part and the same the-
oretical curve-of-growth are used for the determina-
tion of the four values of A6, damping parameter,
and vertical and horizontal shifts.

II. Procedure by Using the Downhill
Simplex Method

In the procedure by Yoshioka (1987)", as well as in
the other procedure described above, the four values
of A0, damping parameter, and vertical and horizon-



84 M

tal shifts are determined through some stages. Yosh-
ioka (2008)” developed a new procedure using the
downhill simplex Method. The procedure above de-
scribed can be regarded as one of optimization prob-
lem where the optimal solution is the set of four vari-
ables, A6, damping parameter, and vertical and
horizontal shifts. The objective function in our prob-
lem which is minimized by the optimal solution is se-
lected according to the criterion of agreement be-
tween the empirical curve-of-growth and the
theoretical one. The variance of absorption lines in the
curve-of-growth in the direction parallel to the ordi-
nate is selected as the objective function in the proce-
dure by Powell (1971)”. On the other hand, the vari-
ance of lines in the curve-of-growth in the direction
parallel to the abscissa is selected as the objective
function in the procedure of the minimum-sigma
method and that by Yoshioka (1987)". Yoshioka
(2008)” made a program which solves this optimiza-
tion problem by the downhill simplex method due to
Nelder and Mead (1965)” (hereafter referred to as
DSM).

The detailed explanations of DSM is described in
the paper by Yoshioka (2008)”. We describe in this
paper an outline of this method. In DSM, a simplex is
the geometric figure consisting in N dimensions (N is
the number of independent variables, and in our case,
N is equal to 4) of N+1 points (or vertices) and of all
of their interconnecting line segments and of polygo-
nal faces. In DSM, the determination of solution is
done in the following iterative way. It starts with N +
1 points which define an initial simplex. The point of a
simplex where the objective function takes the largest
value, which is called the highest point, takes a series
of the following four steps : 1) a reflection away from
the highest point : 2) a reflection and expansion away
from the highest point : 3) a contraction along one di-
mension from the highest point : 4) a contraction
along all dimensions towards the lowest point. In the
above steps, the lowest point is the point where the
objective function takes the smallest value. The above
steps repeat and they terminate when the vector dis-
tance moved in one of those steps is fractionally small-
er in magnitude than some tolerance or, alternatively,
the decrease in the objective function is fractionally
smaller than some tolerance.

Yoshioka (2008)” obtained the four variables using
the program made by him which determines these
values by DSM as the values when the above steps
terminate, whose values are hereafter called the best
values. As described by Yoshioka (2008)°, it was con-
firmed that this program is effective for the determi-
nation of the four values, i.e., in comparison with the

program by Yoshioka (1987)", this program reaches

the best values in quite short steps and in quite short

time. On the other hand, the following problems re-
sulted.

1) The best values depend on the starting set of the
four values. According to the starting set of the
values, the four values of 46.,, damping parameter,
logw2a, horizontal shift, Ax, and vertical shift, Ay,
differ by £0.01, =0.09, £0.05, and *0.06, respec-
tively.

2) There are some starting sets of the four values
which does not converge to the best values in the
case where the tolerance of the decrease in the ob-
jective function for the termination of the iterative
process is smaller than some value (in this case
which is equal to 0.00007).

V. New Procedure by Using the Simulated
Annealing Method

In this paper, we have made the program which
avoids the above problems for DSM. The objective
function for the above determination of the four vari-
ables has many local mimima, which causes the above
problems. The simulated annealing method (hereafter
referred to as SAM) is a method that is suitable for
minimization problems of large scale where a desired
global maximum is hidden among many local minima.

V-1. The Approach of the Simulated
Annealing Method

The heart of SAM is an analogy with the way that
liquids freeze and crystallize. At high temperatures,
the molecules of a liquids move freely due to the ther-
mal motion. If the liquid is cooled slowly, thermal mo-
tion quietens down. The molecules form a crystal that
1s ordered over the distance which is long compared
with the size of the molecules. This crystal is at the
state of minimum energy for this system. For slowly
cooled systems, nature is able to find this minimum
energy state. If it is cooled quickly, it does not reach
this state, but it ends up in a polycrystalline or amor-
phous state which has somewhat higher energy. The
essence of this process is slow cooling, which requires
ample time for redistribution of the molecules as they
lose mobility. This is the technical definition of anneal-
ing, and it is essential for ensuring that a low energy
state is achieved.

So nature’s minimization algorithms is based on the
following procedure. The following Boltzmann proba-
bility distribution,

P(E) oc exp(—E/kT) (2)
indicates that a system in thermal equilibrium at tem-
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perature T has its energy probabilistically distributed
among all different states with energy of E according
to the expression (1), where P is the probability of
distribution. According to the expression (1), there is
a chance of a system being in a high state. Therefore,
there is a corresponding chance for the system to get
out of a local minimum in favor of finding a better and
more global one. The system sometimes goes uphill of
energy levels as well as downhill. The lower the tem-
perature, the less likely is a significant uphill excur-
sion.

SAM is a procedure for minimization which simu-
lates the above procedure by nature. Metropolis and
coworkers first made the program of SAM for combi-
national minimization which is known as the Metropo-
lis algorism. Afterwards, the programs of SAM for
minimization with continuous variables were made by
several researchers. We adopted the procedure by
Press et al. (1992)?, which uses a modification of
DSM.

NV-1I. The Procedure of Our Program

In our program, a simplex of N +1 points moves in
the same way as in DSV, i.e., which reflects or ex-
pands or contracts. A positive, logarithmically distrib-
uted random variable which is proportional to the
temperature 7" is added to the four variables associat-
ed with every vertex of the simplex, and a similar ran-
dom variable is subtracted from the four variables of
every new point which is tried as a replacement point.
This procedure almost accepts a downhill step, but
sometimes accepts an uphill one. In the limit where T
comes close to zero, this algorithm reduces DSM and
converges to a local minimum. At a finite value of T,
the simplex expands to a scale which approximates
the size of the region that can be reached at this tem-
perature, and then it executes a stochastic Brownian
motion within that region, sampling new random
points. The efficiency with which a region is explored
is independent of the distribution of the value of the
objective function around the region sampled, where-
as the efficiency is dependent of the distribution in the
majority of the other minimization method.

There are many annealing schedules which resem-
ble the annealing by nature. Success or failure is often
determined by the choice of annealing schedule. Our
program adopts the following schedule where the val-
ue of T changes according to the value of the objective
function, F.

[1] A starting points of a simplex in 4 dimension com-
prising of 5 points is given where each vertex
consist of the four variables. Then, the /' values

corresponding to each point are calculated, and
the smallest F value, Fc, is determined.

[2] A series of random movements of a simplex in-
cluding contraction and expansion is executed ac-
cording to a starting 7" value. Then, the smallest
F value, F5s, is determined in the F' values which
are obtained in the above series of movements.

[3] Next series of movements is executed and the
corresponding F's value is obtaind. In the case
where this F's value is smaller than that obtained
with the former step, the T value is multiplied or
divided by the SS value which is smaller than 1
and is close to 1. In the above operation, the mul-
tiplication is executed when in the former step
the multiplication is executed, and the division is
executed when in the former step the division is
executed. Then, we go to the step [2]. In the case
where this Fs value is larger than that obtained
with the former step, we go to the step [4].

[4] In the case where this Fs value is smaller than Fc
value, the F's value of the former step is adopted.
And the corresponding four variables is adopted
as the best values. In the case where this Fs value
is larger than Fc value, the T value is multiplied
or divided by the SSS value which is much small-
er than 1. In the above operation, the multiplica-
tion is executed when in the former step the divi-
sion is executed, and the division is executed
when in the former step the multiplication is exe-
cuted. Then we go to the step [4].

NV-1II. The Results

We have tested our program by comparing the re-
sults of our program with those of the program by
Yoshioka (1987)" and of the program by Yoshioka
(2008)”. The data used for the comparison is that for
Fe I lines of HD187203 which is a supergiant with F8
type. The number of Fe I lines is equal to 86.

An absolute curve-of-growth analysis is done for
the above data with the program by Yoshioka (1987)"
and the following set of the four variables Ax, Ay, Oex
(instead of Afe in the case of an absolute curve-of-
growth analysis) and logw2«a is obtained ; Ax =
—3.075, Ay =4.63, H=1.02, and logw2a = —1.85. The
corresponding F value is equal to 2.435970256.

On the other hand, we obtained by the program
for DSM by Yoshioka (2008)” the following best set
of the four variables ; Ax= —3.034, Ay =4.67, Ox=
1.02, and logw2a = — 1.87, for the following starting
set D, Axi= —2.90—0.05i, Ay:=4.80—0.051, fexi=1.15
—0.051, and logw2ai= —2.00+0.051, where i=1,""+, 5,
and for the tolerance of the decrease in the objective
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function for the termination of the iterative process,
ftol=1x10"". The corresponding F value is equal to
2.455285751.

We obtain by the program for SAM the following
best set of the four variables ; Ax= —3.034, Ay =4.67,
fex=1.02, and logw2a = —1.81, which is obtained for
the same starting set as . The corresponding F val-
ue is equal to 2.453717879. The above results are ob-
tained for the following parameters, ftol =0.05, IITER
=20, TEMPTR =0.0101, S5=10.99, SSS=0.01, IIDUM
= —2,and NM =10, where IITER is the maximum ex-
ecution number of iteration for the satisfaction of fto/
value ; TEMPTR is the starting 7 value ; IIDUM is a
parameter for the program generating random num-
ber ; NM is the maximum number of iteration de-
scribed in the former section. The above results little
depend on ftol, SS, and SSS values. On the other hand,
they depend on the TEMPTR value. For example, the
following best set of the four variables is obtained ; Ax
= —3.023, Ay =4.68, x=1.03, and logw2a = —1.72 for
the following parameters ; fto/=0.05, IITER =20,
TEMPTR=0.2,55=0.99, SS5=0.01, IIDUM = -2,
and NM =10. The corresponding F value is equal to
2.692395486. The results also depend a little on the
IIDUM value. For example, the following best set of
the four variables is obtained ; Ax = —3.037, 4y =4.66,
fe=1.01, and logiw2a = — 1.80 for the following param-
eters ; ftol =0.05, IITER =20, TEMPTR =0.0101, SS
=0.99, $55=0.01, IIDUM = —4, and NM =10. The
corresponding I value is equal to 2.468379893. In the
case where IIDUM = —4, the F value takes the mini-
mum value of 2.453411513. The corresponding best
set of the four variables are as follows ; Ax= —3.034,
Ay =4.67, 8= 1.02, and logi2a = — 1.80.

These results depend on the starting set of the four
variable. For example, we obtained by the program
for DSM the following best set of the four variables ;
Ax=—2.988, Ay =4.71, 8=1.01, and logi2a = —1.81,
for the following starting set @), Axi= —2.40 —0.20i,
Ayi=5.30—0.20i, fexi = 1.60 — 0.20i, and logw2ai= —2.40
+0.201, and for fto/=1x%10"". The corresponding F
value is equal to 2.646665165.

We obtain by the program for SAM the following
best set of the four variables ; Ax= —2.988, Ay =4.71,
f=1.01, and logw2a = —1.69, which is obtained for
the same starting set as @. The corresponding F val-
ue is equal to 2.623856010. The above results are ob-
tained for the following parameters, fto/ =0.05, IITER
=20, TEMPTR=0.0112, S§=0.99, SS5=0.01, IIDUM
= —2, and NM =10. The above results little depend
on ftol, SS, and SSS values also in this case. The above
results also depend on TEMPTR value. For example,
the following best set of the four variables is obtained

- %

; Ax=—2.998 Ay =4.70, 8~=1, and logw2a = —1.80,
for the following parameters ; ftol =0.05, IITER = 20,
TEMPTR=0.2,55=0.99, S§5=0.01, IIDUM = -2,
and NM =10. The corresponding F value is equal to
2.803163673. The results also depend a little on the
IIDUM value. For example, the following best set of
the four variables is obtained ; Ax = —2.988, Ay =4.71,
f=1.01, and logiw2a = — 1.79 for the following param-
eters ; ftol =0.05, IITER =20, TEMPTR =0.0112, SS
=0.99, SSS5=0.01, IIDUM = —4, and NM=10. The
corresponding I’ value is equal to 2.642712278. In the
case where IIDUM = —4, the F value takes the mini-
mum value of 2.642042551. The corresponding best
set of the four variables are as follows ; Ax = —2.988,
Ay =4.67, 8<=1.01, and logi2a = — 1.79.

We obtained by the program for DSM other best
set of the four variables ; Ax = —3.046, Ay =4.65, 0=
1.02, and logw2a = — 1.82, for the following starting set
®), Axi= —2.90—-0.051, Ayi=4.80—0.05i, fexi=1.60—
0.20i, and logw2ai = — 2.40 + 0.20i, and for ftol =1 x10"".
The corresponding F' value is equal to 2.44151717739.

We obtain by the program for SAM the following
best set of the four variables ; Ax= —3.034, Ay =
4.67, 8x=1.02, and logw2a = —1.78, which is obtained
for the same starting set as 3. The corresponding
F value is equal to 2.453154568. The above results
are obtained for the following parameters, fto/ =0.05,
IITER=20, TEMPTR=0.0129, SS=0.99, SS5=0.01,
IIDUM = -2, and NM =10. The above results little
depend on ftol, but it depends a little on IITER, SS and
SSS. For example, we obtain the following best set of
the four variables ; Ax= —2.999, Ay =4.70, 0..=1.01,
and logiw2a = —1.69, for the following parameters ;
ftol=0.05, [ITER=40, TEMPTR=0.0129, SS=
0.99, SS5=0.01, IIDUM = -2, and NM =10. The
corresponding F' value is equal to 2.563514747. And
we obtain the following best set of the four variables ;
Ax = —3.034, Ay =4.67, = 1.02, and logw2a = —1.78,
for the following parameters ; fto/ =0.05, JITER =
40, TEMPTR =0.0129, SS=0.999, SSS=0.001, IIDUM
= —2, and NM =10. The corresponding F value is
equal to 2.453154355. The above results depend on
TEMPTR value. For example, the following best set
of the four variables is obtained ; Ax = —3.042, Ay =
4.66, B=1.02, and logw2a = —1.81, for the following
parameters ; ftol=0.05, [ITER =20, TEMPTR =
0.001, SS=0.99, S55=0.01, IIDUM = — 2, and NM =
10. The corresponding F' value is equal to 2.440207523.
The results also depend a little on on the IJIDUM
value, though in this case the effect is small. For
example, the results for the parameters of fto/ =0.05,
IITER=20, TEMPTR=0.0129, SS=0.99, S55=0.01,
IIDUM = —4, and NM =10 are the same as those for
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the parameters of fto/=0.05, IITER =20, TEMPTR
=0.0129, S5=0.99, SSS=0.01, IIDUM = — 2, and NM
=10. And the following best set of the four variables
is obtained ; Ax= —3.032, Ay =4.66, f..=1.02, and
logiw2a = —1.81, for the following parameters ; ftol =
0.05, IITER =20, TEMPTR =0.001, S§=0.99, SSS5=
0.01, IDUM = — 1, and NM = 10. The corresponding F'
value is equal to 2.439946313 which is smallest in the
F values obtained by our program for SAM.

We also obtained by the program for DSM other
best set of the four variables ; Ax= —2.988, Ay =
4.71, B=1.01, and loguw2a = —1.79, for the following
starting set @), Axi= —2.40—0.20i, Ay:=5.30—0.20i,
fei=1.60—0.201, and logw2ei= —1.20 —0.20i, and for
ftol=1x10"°. The corresponding F value is equal to
2.642037475.

We obtain by the program for SAM the following
best set of the four variables ; Ax= —2.988, Ay =4.71,
f=1.01, and logw2a = —1.79, which is obtained for
the same starting set as @. The corresponding F val-
ue is equal to 2.642039632. The above results are ob-
tained for the following parameters, ftol =0.05, IITER
=20, TEMPTR=0.01, S5=0.99, SS5=0.01, IIDUM =
—2, and NM =10. The above results little depend on
ftol, SS, SSS, and NM values. For example, the follow-
ing best set of the four variables is obtained ; Ax =
—2.988, Ay=4.71, 0.=1.01, and logw2a= —1.79 for
the following parameters ; fto/ =0.05, IITER =20,
TEMPTR=0.01,55=0.999, SSS=0.001, IIDUM = -2,
and NM =20. The corresponding F value is equal to
2.642115121. In this case, the same results are ob-
tained independent of the IIDUM value. The results
depend a little on the IITER value. For example, the
following best set of the four variables is obtained ; Ax
= —2.982, Ay =4.72 0=1.02, and logw2a = —1.78 for
the following parameters ; fto/ =0.05, IJITER =40,
TEMPTR=0.01, 55=0.99, SSS=0.01, IIDUM = -2,
and NM =10. The corresponding F value is equal to
2.702625811. The results also depend on the TEMPTR
value. For example, the following best set of the four
variables is obtained ; Ax= —2.998, Ay =4.70 fex=
1.00, and logw2a = — 1.80 for the following parame-
ters ; fto/=0.05, ITER=20, TEMPTR=0.2,SS=
0.99, SSS=0.01, IIDUM = -2, and NM =10. The cor-
responding F value is equal to 2.803163673.

Furthermore, we obtained by the program for DSM
other best set of the four variables ; Ax= —2.989, Ay
=4.69, 0x=1.01, and logi2a = — 1.79, for the following
starting set ®), Axi= —2.40—0.20i, Ay:=4.10+ 0.20i,

i = 1.60 —0.201, and logw2ai= —1.20 —0.20i, and for
ftol=1%10"°. The corresponding F value is equal to
2.542638882.

We obtain by the program for SAM the following

best set of the four variables ; Ax= —2.969, Ay =
4.66, 6=1.00, and logw2a = —1.78, which is obtained
for the same starting set as ®. The corresponding
F value is equal to 2.510111125. The above results
are obtained for the following parameters, fto/ =0.05,
IITER=40, TEMPTR=0.0001, SS=0.99, S55=0.01,
IIDUM = —3, and NM =10. The above results little
depend on ftol, SS, SSS, and NM values. The results
depend on the TEMPTR value. For example, the
following best set of the four variables is obtained ;

Ax = —2.988, Ay =4.71 6=1.01, and logw2ea= —1.79
for the following parameters ; fto/ =0.05, IJITER =
40, TEMPTR =0.01, S5=0.99, SS5=0.01, IIDUM
= —3, and NM =10. The corresponding F" value is
equal to 2.642039632. The results also depend on the
IITER value. For example, the following best set of
the four variables is obtained ; Ax= —2.999, Ay =
4.70, 6x=1.00, and logw2a = — 1.80 for the following
parameters ; ftol=0.05, [ITER =20, TEMPTR =
0.0001, SS=0.99, SSS=0.01, IIDUM = -3, and NM =
10. The corresponding F' value is equal to 2.852018285.

V. Conclusions and Discussion

The following conclusions are drawn from the
above results.

1) The best set of the four variables depends on the
starting set. According to the starting set with ap-
propriate four values and parameters, the best set
of Ax, Ay, O, and logi2a differ by £0.035, £0.03,
+0.01, and £0.09. This result was also obtained
by the program for DSM, though the uncertainties
in Ax, Ay are small in this case. The best set differs
according to the order of values of the four vari-
ables, even if the starting sets are equal as a set.
The starting sets @, @), and ® are equal as a set.
This dependence appears also in the results by the
program for DSM. Judging on a standard of uncer-
tainty in the curve-of-growth analysis, these un-
certainties are small.

2) The appropriate values of parameters are as fol-
lows ; ftol =0.1~0.01, IITER = 10~50, TEMPTR =
0.0001~0.01, SS=0.99~0.999, SSS=0.01~0.001,
IIDUM= -1~ -5, and NM =10~20. In many
cases, the best set depends little on the values of
ftol, SS, SSS, and NM. On the other hand, the best
set depends a little on the values of IITER and
IIDUM, and it depends on the TEMPTR value.

3) Usually the corresponding F values obtained in our
program of SAM is a little smaller than that ob-
tained with the program of DSM with the same
starting set of the four variables, though they are
larger than that obtained with the program by
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Yoshioka (1987)".

In addition to the problem described in Yoshioka
(1987)", the following problems are left for a future
study. Although our program obtains the best set of
four variables with smaller F values than that ob-
tained with the program of DSM, it gives, as well as
the program of DSM, different sets according to the
starting set. It is desirable to devise a algorithm to
avoid converging in a local minimum before converg-
ing to the global minimum.
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