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ABSTRACT

　We made the three programs which modify the program of the Curve-of-Growth Analysis by the Simulated 
Annealing Method made by Yoshioka （2011）, according to the suggestion made by Press et al. （1992）. These 
programs determines the four variables, Δx , Δy , θex, and log102α as the best set of the four variables from the staring 
set of 5 points of the four variables, where Δx  is a difference between an empirical curve-of-growth and a theoretical 
curve-of-growth in the direction parallel to the abscissa and Δy  is a difference of the two curves in the direction 
parallel to the ordinate. The objective function is taken to be the variance of lines in the direction parallel to the 
abscissa of a curve-of-growth.
　The effectiveness of these programs was tested by comparing the results by these programs with those by the 
program of the Downhill Simplex Method by Yoshioka and Kobayashi （2009） and by the program of the Simulated 
Annealing Method by Yoshioka （2011）. The data used for the comparison are those for 86 lines of Fe I of HD187203. 
The following conclusions were drawn from the test.
1） Almost the same values of the best set of the four variables are obtained for the three programs.
2） The results depend on the T 0 parameter and the starting set of the four variables for all the three programs, 
where the T 0 parameter is the first value of the parameter which is used in the Simulated Annealing Method as 
that corresponding to temperature.

3） The results depend slightly or do not depend on the other parameters. Taking the smallest value of the objective 
function into account, the one of the three program seems to be the most robust programs among the three 
programs.

4） Compared with the programs of the Downhill Simplex Method and the Simulated Annealing Method, the three 
programs give the smallest value of the objective function which are smaller than that for the program of the 
Downhill Simplex Method and comparable to that for the program of the Simulated Annealing Method. The three 
program give the result with parameters smaller than that for the Simulated Annealing Method.

5） In case of reasonable values of the parameters and the starting set of the four variables, the three programs give 
the four variables, Δθex, log102α, Δx , and Δy  within the errors of ±0.00, ±0.10, ±0.04 and ±0.04, respectively.

6） Although the above errors are small by the standards of the curve-of-growth analysis, it is still desirable to devise 
a algorithm to avoid converging to a local minimum before converging to the global minimum.

要　旨

　われわれは、Yoshioka（2011）が作成した疑似焼きなまし法を適用して成長曲線から大気パメータを求めるプロ
グラムを、Press et al.（1992）の提案に従って改良する３つのプログラムを作成した。これらのプログラムは、Δx , 
Δy , θex, and log102αの４つの変数をこの変数の５つの初期値の組から求めるものである。なお、Δxは観測された成長
曲線と理論成長曲線との横軸の差を意味し、Δyは両成長曲線の縦軸の差を意味する。ここで目的関数は、成長曲線
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Ⅰ．Introduction

　A curve-of-growth analysis is one of the methods 
which are used for the analysis of stellar photo-
spheres. The other method which is mainly used is a 
model atmosphere analysis. Since detailed distribution 
of physical quantities such as temperature and pres-
sure and so on are taken into account in a model atmo-
sphere analysis, it is called a fine analysis. It is used 
when accurate observational data are available and 
the nature of stellar photosphere is known to a good 
approximation.
　A curve-of-growth analysis is usually used when 
accurate observational data are not available or there 
is not enough knowledge about the nature of a stellar 
photosphere. In this analysis, one-layer approxima-
tion is made, i.e., it is assumed that there exists a spe-
cific value for a physical quantity of the photosphere 
such as temperature and pressure.
　A curve-of-growth is a graphical representation of 
the relation between the logarithm of an equivalent 
width of an absorption line, log10W , and the logarithm 
of a number density of absorption atoms, N , times an 
oscillator strength, f , times an statistical weight, g , 
log10gfN . The equivalent width of an absorption line is 
the width of the rectangular profile for which the 
height is equal to the continuum level near the absorp-
tion line. The equivalent width divided by the wave-
length of the absorption line, λ, W/λ is often used in-
stead of W, and some multiplicative factor C , is often 
added to gfN . We obtain by this method the represen-
tative quantities of a photosphere, for example, elec-
tron pressure, gas pressure, micro-turbulent velocity, 
ionization temperature, and excitation temperature, 

Tex, together with chemical composition. This analysis 
is also called coarse analysis.
　In cases where accurate values for oscillater 
strength are not known, the values of the abscissa of 
the curve-of-growth, log10X, for a standard star are 
plotted instead of log10gfN  or log10gfNC . The standard 
star is the star for which the physical quantities and 
the chemical composition of the photosphere are al-
ready obtained. In this case, the relative values to the 
standard star for the physical quantities and the 
chemical composition are obtained instead of the abso-
lute values. This analysis is called a differential curve-
of-growth analysis or a differential coarse analysis.

Ⅱ． Procedure by Using a Computer Done 
to Date

　The curve-of-growth analysis has conventionally 
been done by eye measure. There is a fear that the re-
sults obtained by eye measure depend on the subjec-
tivity of an analyzer. Moreover, an objective estimate 
of an error cannot been made by eye measure. The 
curve-of-growth by using a computer have been ap-
plied in order to overcome the above weak points.
　For example, Tech （1971）1） has made a differential 
curve-of-growth analysis for BaⅡ star ζ Cap, using ε 
Vir as a standard star, he determined the differential 
reciprocal temperature, Δθex （θex≡5040/Tex） relative 
to the standard star by the minimum-sigma method, 
using a computer. Powell （1971）2） has made a comput-
er program for a differential curve-of-growth analy-
sis of solar-type stars.
　The detailed explanations for these methods are de-
scribed in the original papers and in the paper by 
Yoshioka and Kobayashi （2009）3）. We describe in this 

上にプロットされた吸収線の横座標のちらばりの分散値とした。
　われわれは、これらのプログラムとYoshioka and Kobayashi（2009）が作成した成長曲線法のプログラムと
Yoshioka（2011）が作成した擬似焼きなまし法のプログラムの結果を比較することにより、これらのプログラムの
有効性を調べた。比較に使われたデータは、HD187203のFe I の吸収線86本である。そして、次の結論を得た。
1） ３つのプログラムは、最適な４つの変数の組み合わせとして、ほとんど同じ値を与える。
2） ３つのプログラムとも、パラメータT 0の値と４つの変数の初期値に結果は依存する。ここで、パラメータT 0は擬
似焼きなまし法で、温度に対応するパラメータである。

3） 結果は、残りのパラメータに依存しないか、ほとんど依存しない。評価関数の値を考慮すると、３つのプログラ
ムの中の１つが最も影響の受けにくいプログラムであるように思われる。

4） 滑降シンプレックス法のプログラムと比べて、３つのプログラムはより小さい評価関数の値を与え、疑似焼きな
まし法のプログラムと比べて、同程度の値を与える。疑似焼きなまし法のプログラムと比べて、３つのプログラ
ムはより少ない数のパラメータで足りる。

5） パラメータと４つの変数の初期値を適切に選ぶならば、４つの変数Δθex, log102α, Δx , and Δyの最適値は、次の誤
差範囲で求まる。±0.00, ±0.10, ±0.04, ±0.04。

6） 5）の誤差は、成長曲線解析法の基準からいえば、小さいが、局所的最小値に陥らないで大局的最小値に達するた
めに、さらにプログラムを改良する余地が残されている。
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paper an outline and strong and weak points of these 
methods.
　In the minimum-sigma method, several values of 
Δθex are chosen and the abscissa of curve-of-growth, 
log10Xrel is taken according to the following expression,
　　log10Xrel＝log10Xs－Δθexχ1, （1）
where log10Xs is the abscissa of a curve-of-growth of a 
standard star and χ1 is the excitation potential of the 
lower level of a absorption line. Then, a theoretical 
curve-of-growth is fitted to the above empirical 
curve-of-growth, and the standard deviation σ of the 
empirical curve-of-growth from the theoretical 
curve-of-growth in the direction parallel to the ab-
scissa is calculated. By repeating the above procedure 
for several values Δθex, a correlation between σ and 
Δθex is obtained. The adopted value of Δθex is taken to 
be the value for which σ takes the minimum value. 
Using this value of Δθex, the empirical curve-of-
growth is constructed by plotting for each line log10Xrel 
along the abscissa and log10W/λ along the ordinate. 
This empirical curve-of-growth is used to obtain the 
other representative quantities of a photosphere.
　The strong points of this procedure, which is the re-
versal of the weak points of the conventional proce-
dure, are as follows：1） Each line is treated separate-
ly and separate weight can be applied to each line； 
2） Correct excitation potential rather than mean val-
ues of excitation potential are taken into account；
3） It gives dispassionately reproducible results and 
objective estimates of error. On the other hand, this 
procedure has the following weak points：1） Great 
care must be exercised in assuring that no widely dis-
cordant lines are used；2） Since lines on the flat part 
or on the damping part of a curve-of-growth will 
dominate the value of σ and mask the variation due to 
the variation of Δθex , such lines are excluded in this 
analysis, which brings about ambiguity to the re-
sults；3） There is not a guarantee that a mean curve-
of-growth from which the value σ is calculated really 
represents the distribution of points adequately.
　According to the computer program made by Pow-
ell （1971）2） the Δθex value and the vertical and the hor-
izontal shifts which fit an empirical curve-of-growth 
to a theoretical one are first determined, and then the 
shape of the theoretical curve, i.e. the damping param-
eter of the curve is determined. In the determination 
of the Δθex value and the vertical and the horizontal 
shifts, only the lines which are on the linear part or on 
the knee of the flat part of the curve-of-growth are 
used, because the Δθex value which is determined from 
these lines depends only slightly on the shape of the 
theoretical curve and is not affected much by the ver-
tical shift adopted in the fitting. The determination of 

the Δθex value and the vertical and the horizontal 
shifts is done in the following iterative way. First, the 
empirical curve-of-growth is constructed adopting 
the Δθex value. Secondly, the empirical curve is fitted 
to the theoretical curve. Thirdly, the value of log10X  
corresponding to log10W/λ for the star analyzed is 
read off for each absorption line from this theoretical 
curve. Lastly, a new Δθex value is found from a least 
squares solution to the relation,
　　［X］＝［A］－Δθexχ1, （2）
where square bracket represents the logarithmic dif-
ference of the denoted quantity between the star ana-
lyzed and the standard star；A  is the number ratio of 
a relevant element and to hydrogen uncorrected for 
ionization. The above iterative process is repeated un-
til a difference between successive estimate of Δθex be-
comes less than the convergence tolerance （＝0.005）. 
Adopting the values of Δθex, and of the vertical and the 
horizontal shifts thus determined, the final value of 
damping parameter of the curve-of-growth is deter-
mined by obtaining the best fit of the empirical curve 
on the condition for a least-squares fit in a direction 
parallel to the ordinate. If the difference between this 
value of damping parameter and the previous value of 
the theoretical curve which is used to determine the 
Δθex value and the vertical and the horizontal shifts is 
greater than 1, the whole process is repeated using 
the new value of damping parameter.
　The strong points of this procedure are the same as 
described for the minimum-sigma method. The weak 
points of this procedure also are the same as the mini-
mum-sigma method, except for the third point. There 
are, however, other two weak points：1） There is a 
fear of divergence in the iterative process；2） The de-
termination of the values of Δθex, and of the vertical 
and the horizontal shifts is done on the condition for a 
least-squares fit in a direction parallel to the abscissa, 
while the determination of the value of damping pa-
rameter is done on the condition for a least-squares fit 
in a direction parallel to the ordinate, which lacks con-
sistency.
　Yoshioka （1987）4） developed a new procedure. In 
the new procedure, the determination of the four val-
ues of Δθex, damping parameter, and vertical and hori-
zontal shifts is done in the following way. First, the 
value of damping parameter is given for a theoretical 
curve-of-growth. Secondary, the theoretical curve is 
fitted to the empirical curve and the values Δθex, and 
horizontal shift are determined as least-squares solu-
tion in the direction parallel to abscissa for various val-
ues of vertical shift. Thirdly, the value of vertical shift 
and the corresponding values of Δθex and horizontal 
shift which gives a minimum value of standard devia-
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tion, σtemp, of the Δθex value are selected. The above 
process is repeated for various values of damping pa-
rameter, and the four values of Δθex, damping parame-
ter, and vertical and horizontal shifts for which the 
σtemp value takes the minimum value are adopted as 
the final values. In the above process, a gradient of the 
theoretical curve-of-growth for the ordinate of a line 
is taken into account as a weight for the least-squares 
solution so that the lines on the linear and damping 
parts of the curve-of-growth are given heavier 
weight than those on the flat part of the curve, be-
cause the latter lines gives a larger difference be-
tween theoretical and empirical curve-of-growths for 
the same value of error in the ordinate.
　The strong points of this procedure are the same as 
those of the minimum-sigma method and of the proce-
dure by Powell （1971）2）. The weak points of both of 
these procedures, i.e., the ambiguity in the use of lines 
and the inconsistency in the use of curve-of-growth 
are overcome in the procedure by Yoshioka （1987）4）, 
because this procedure uses all the lines which belong 
to those on the flat and damping parts of curve-of-
growth and the same theoretical curve-of-growth are 
used for the determination of the four values.

Ⅲ． Procedure by Using the Downhill 
Simplex Method

　In the procedure by Yoshioka （1987）4）, as well as in 
the other procedure described above, the four values 
of Δθex, damping parameter, and vertical and horizon-
tal shifts are determined through some stages. Yosh-
ioka （2008）5） developed a new procedure using the 
downhill simplex Method. The procedure above de-
scribed can be regarded as one of optimization prob-
lem where the optimal solution is the set of four vari-
ables, Δθex, damping parameter, and vertical and 
horizontal shifts. The objective function in our prob-
lem which is minimized by the optimal solution is se-
lected according to the criterion of agreement be-
tween the empirical curve-of-growth and the 
theoretical one. The variance of absorption lines in the 
curve-of-growth in the direction parallel to the ordi-
nate is selected as the objective function in the proce-
dure by Powell （1971）2）. On the other hand, the vari-
ance of lines in the curve-of-growth in the direction 
parallel to the abscissa is selected as the objective 
function in the procedure of the minimum-sigma 
method and that by Yoshioka （1987）4）. Yoshioka and 
Kobayashi （2009）3） made a program which solves this 
optimization problem by the downhill simplex method 
due to Nelder and Mead （1965）5）（hereafter referred 
to as DSM）.

　The detailed explanations of DSM is described in 
the paper by Yoshioka and Kobayashi （2009）3）. We de-
scribe in this paper an outline of this method. In DSM, 
a simplex is the geometric figure consisting in N di-
mensions （N is the number of independent variables, 
and in our case, N is equal to 4） of N＋1 points （or 
vertices） and of all of their interconnecting line seg-
ments and of polygonal faces. In DSM, the determina-
tion of solution is done in the following iterative way. 
It starts with N＋1 points which define an initial sim-
plex. The point of a simplex where the objective func-
tion takes the largest value, which is called the high-
est point, takes a series of the following four steps：
1） a reflection away from the highest point：2） a re-
flection and expansion away from the highest point：
3） a contraction along one dimension from the highest 
point：4） a contraction along all dimensions towards 
the lowest point. In the above steps, the lowest point 
is the point where the objective function takes the 
smallest value. The above steps repeat and they ter-
minate when the vector distance moved in one of 
those steps is fractionally smaller in magnitude than 
some tolerance or, alternatively, the decrease in the 
objective function is fractionally smaller than some tol-
erance.
　Yoshioka and Kobayashi （2009）3） obtained the four 
variables using the program made by him which de-
termines these values by DSM as the values when the 
above steps terminate, whose values are hereafter 
called the best values. As described by Yoshioka and 
Kobayashi （2009）3）, it was confirmed that this pro-
gram is effective for the determination of the four val-
ues, i.e., in comparison with the program by Yoshioka 
（1987）4）, this program reaches the best values in quite 
short steps and in quite short time. On the other hand, 
the following problems resulted.
1） The best values depend on the starting set of the 
four values. According to the starting set of the 
values, the four values of Δθex, damping parameter, 
log102α, horizontal shift, Δx , and vertical shift, Δy , 
differ by ±0.01, ±0.09, ±0.05, and ±0.06, respec-
tively.

2） There are some starting sets of the four values 
which does not converge to the best values in the 
case where the tolerance of the decrease in the ob-
jective function for the termination of the iterative 
process is smaller than some value （in this case 
which is equal to 0.00007）.

Ⅳ． Procedure by Using the Simulated 
Annealing Method

　In the following paper by Yoshioka （2011）6）, we 
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uted random variable which is proportional to the 
temperature T  is added to the four variables associat-
ed with every vertex of the simplex, and a similar ran-
dom variable is subtracted from the four variables of 
every new point which  is tried as a replacement point. 
This procedure almost accepts a downhill step, but 
sometimes accepts an uphill one. In the limit where T  
comes close to zero, this algorithm reduces DSM and 
converges to a local minimum. At a finite value of T , 
the simplex expands to a scale which approximates 
the size of the region that can be reached at this tem-
perature, and then it executes a stochastic Brownian 
motion within that region, sampling new random 
points. The efficiency with which a region is explored 
is independent of the distribution of the value of the 
objective function around the region sampled, where-
as the efficiency is dependent of the distribution in the 
majority of the other minimization method.
　There are many annealing schedules which resem-
ble the annealing by nature. Success or failure is often 
determined by the choice of annealing schedule. The 
schedule adopted by Yoshioka （2011）6） is as follows.
［1］ A starting points of a simplex in 4 dimension com-

prising of 5 points is given. Then, the F  values 
corresponding to each point are calculated, and 
the smallest F  value, FC, is determined, where F  
value is the value of the objective function.

［2］ A series of random movements of a simplex in-
cluding contraction and expansion is executed ac-
cording to a starting T  value. Then, the smallest 
F  value, FS, is determined in the F  values which 
are obtained in the above series of movements.

［3］ Next series of movements is executed and the 
corresponding FS value is obtained. In the case 
where this FS value is smaller than that obtained 
with the former step, the T  value is multiplied or 
divided by the SS  value which is smaller than 1 
and is close to 1. In the above operation, the mul-
tiplication is executed when in the former step 
the multiplication is executed, and the division is 
executed when in the former step the division is 
executed. Then, we go to the step ［2］. In the case 
where this FS value is larger than that obtained 
with the former step, we go to the step ［4］.

［4］ In the case where this FS value is smaller than FC 
value, the FS value of the former step is adopted. 
And the corresponding four variables is adopted 
as the best values. In the case where this FS value 
is larger than FC value, the T  value is multiplied 
or divided by the SSS  value which is much small-
er than 1. In the above operation, the multiplica-
tion is executed when in the former step the divi-
sion is executed, and the division is executed 

have made the program which avoids the above prob-
lems for DSM. The objective function for the above 
determination of the four variables has many local 
mimima, which causes the above problems. The simu-
lated annealing method （hereafter referred to as 
SAM） is a method that is suitable for minimization 
problems of large scale where a desired global mini-
mum is hidden among many local minima.
　The heart of SAM is an analogy with the way that 
liquids freeze and crystallize. At high temperatures, 
the molecules of a liquids move freely due to the ther-
mal motion. If the liquid is cooled slowly, thermal mo-
tion quietens down. The molecules form a crystal that 
is ordered over the distance which is long compared 
with the size of the molecules. This crystal is at the 
state of minimum energy for this system. For slowly 
cooled systems, nature is able to find this minimum 
energy state. If it is cooled quickly, it does not reach 
this state, but it ends up in a polycrystalline or amor-
phous state which has somewhat higher energy. The 
essence of this process is slow cooling, which requires 
ample time for redistribution of the molecules as they 
lose mobility. This is the technical definition of anneal-
ing, and it is essential for ensuring that a low energy 
state is achieved.
　So natureʼs minimization algorithms is based on the 
following procedure. The following Boltzmann proba-
bility distribution,
　　P（E） ∝ exp（－E/kT） （3）
indicates that a system in thermal equilibrium at tem-
perature T  has its energy probabilistically distributed 
among all different states with energy of E  according 
to the expression （3）, where P  is the probability of 
distribution. According to the expression （3）, there is 
a chance of a system being in a high state. Therefore, 
there is a corresponding chance for the system to get 
out of a local minimum in favor of finding a better and 
more global one. The system sometimes goes uphill of 
energy levels as well as downhill. The lower the tem-
perature, the less likely is a significant uphill excur-
sion.
　SAM is a procedure for minimization which simu-
lates the above procedure by nature. Metropolis and 
coworkers first made the program of SAM for combi-
national minimization which is known as the Metropo-
lis algorism. Afterwards, the programs of SAM for 
minimization with continuous variables were made by 
several researchers. We adopted the procedure by 
Press et al. （1992）8）, which uses a modification of 
DSM.
　In our program, a simplex of N＋1 points moves in 
the same way as in DSM, i.e., which reflects or ex-
pands or contracts. A positive, logarithmically distrib-
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Ⅴ． Modifications to the Simulated Anneal-
ing Method

　We have modif ied the program by Yoshioka 
（2011）6）, according to the suggestion made by Press et 
al. （1992）8）. Press et al. （1992）8） suggests that there 
are three modes which reduce the T  value sufficiently 
slowly. The first of the modes, which hereafter is 
called the mode A, is as follows. The T  value is re-
duced to （1－ε） T  value after every m  moves. The op-
timal ε/m  value depends on the situation where the 
program is applied. The second mode, which here- 
after is called the mode B, is as follows. The T  value is 
reduced to T 0 （1－k/K）α after every m  moves, where 
T 0 is the initial T  value；k  is the cumulative number 
of moves thus far；K  is the total number of moves 
which is budgeted in advance；α is the constant, say, 
1, 2, or 4. The optimal value of α depends on the situa-
tion where the program is applied. The third mode, 
which hereafter is called the mode C, is as follows. Af-
ter every m  moves, the T  value is reduced to Tβ （F 1

－Fb）, where β is constant of order 1；F 1 is the small-
est value of the objective function currently represent-
ed in the simplex；Fb is the smallest value of the ob-
ject ive function ever encountered . The above 
reduction is made under the restriction that T  does 
not reduce by more than some fraction γ at a time. 
The optimal values of β and γ depend on the situation 
where the program is applied.
　We have made the programs which adopted the 
above modes. Hereafter, we call these programs, the 
program SAMA, SAMB, and SAMC, for the program 
which adopt the mode A, B, and C, respectively. We 
have applied the programs to the data, which were 
used for the comparison by Yoshioka and Kobayashi 
（2009）3） and by Yoshioka （2011）6） i.e. that for Fe I 
lines of HD187203 which is a supergiant with F8 type.
　The following results are obtained for the program 
SAMA. The smallest F  value of 2.441651618 is ob-
tained for the following parameters；T 0＝0.06, ε＝0.8, 
and m＝10. The corresponding best set of the four 
variables is as follows；Δx＝－3.046, Δy＝4.65, θex＝
1.02, and log102α＝－1.85. This result is obtained for 
the starting set ②. The results do not depend on the 
parameter ε nor m . On the other hand, they depend 
on the parameter T 0. For example, the smallest F  val-
ue of 2.441785862 and of 2.540081172 are obtained for 
the T 0 parameter of 0.05 and 0.07, respectively. The 
corresponding best set of the four variables is as fol-
lows；Δx＝－3.046, Δy＝4.65, θex＝1.02, and log102α＝
－1.85 and Δx＝－3.044, Δy＝4.66, θex＝1.02, and 
log102α＝－1.78, respectively. The results also depend 

when in the former step the multiplication is exe-
cuted. Then we go to the step ［4］.

　We tested our program by comparing the results of 
our program with those of the program by Yoshioka 
（1987）4） and of the program by Yoshioka （2011）6）. The 
data used for the comparison is that for Fe I lines of 
HD187203 which is a supergiant with F8 type. The 
number of Fe I lines is equal to 86.
　An absolute curve-of-growth analysis is done for 
the above data with the program by Yoshioka （1987）4） 
and the following set of the four variables Δx , Δy , θex 
（instead of Δθex in the case of an absolute curve-of-
growth analysis） and log102α is obtained；Δx＝
－3.075, Δy＝4.63, θex＝1.02, and log102α＝－1.85. The 
corresponding F  value is equal to 2.435970256.
　On the other hand, we obtained by the program for 
DSM by Yoshioka and Kobayashi （2008）3） the follow-
ing best set of the four variables；Δx＝－3.034, Δy＝
4.67, θex＝1.02, and log102α＝－1.87, for the following 
starting set ①, Δx i＝－2.90－0.05i, Δy i＝4.80－0.05i, 
θexi＝1.15－0.05i, and log102αi＝－2.00＋0.05i, where i＝
1, …, 5, and for the tolerance of the decrease in the ob-
jective function for the termination of the iterative 
process, ftol＝1×10－9. The corresponding F  value is 
equal to 2.455285751. We obtain by the program for 
SAM the following best set of the four variables；Δx
＝－3.034, Δy＝4.67, θex＝1.02, and log102α＝－1.81, 
which is obtained for the same starting set as ①. The 
corresponding F  value is equal to 2.453717879. The 
above results are obtained for the following parame-
ters, ftol＝0.05，IITER＝20, TEMPTR＝0.0101, SS＝
0.99, SSS＝0.01, IIDUM＝－2, and NM＝10, where 
IITER  is the maximum execution number of iteration 
for the satisfaction of ftol  value；TEMPTR  is the 
starting T  value；IIDUM  is a parameter for the pro-
gram generating random number；NM  is the maxi-
mum number of iteration described in the former sec-
tion. The above results depend not only on the above 
parameters but also on the starting set of the four 
variables. For example, the following best set of the 
four variables is obtained；Δx＝－3.032, Δy＝4.66, θex
＝1.02, and log102α＝－1.81, for the following parame-
ters；ftol＝0.05，IITER＝20, TEMPTR＝0.001, SS＝
0.99, SSS＝0.01, IIDUM＝－1, and NM＝10. This re-
sult is obtained for the starting set ②, Δxi＝－2.90－
0.05i, Δyi＝4.80－0.05i, θex＝1.60－0.20i, and log102αi＝
－2.40＋0.20i. The corresponding F  value is equal to 
2.439946313 which is the smallest in the F  values ob-
tained by our program for SAM.
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γ＝0.8, and m＝100. The corresponding best set of the 
four variables is as follows；Δx＝－3.046, Δy＝4.65, 
θex＝1.02, and log102α＝－1.80. This result is obtained 
for the starting set ②. The results depend on the pa-
rameter T 0. For example, the smallest F  value of 
2.441023899 and of 2.441042864 are obtained for the T 0 
parameter of 0.002 and 0.004, respectively. The corre-
sponding best sets of the four variables are the same 
as that for the above set. The results also depend on 
the starting set of the four variables. For example, the 
smallest F  value of 2.453532079 is obtained for the 
starting set ①. This result is obtained for the follow-
ing Parameters；T 0＝0.005, β＝1, γ＝0.8, and m＝400. 
The corresponding best set of the four variables is as 
follows；Δx＝－3.034, Δy＝4.67, θex＝1.02, and log102α
＝－1.81. The results do not depend on the parame-
ters β and γ. The results depend on the m  parameter. 
But, they depend this parameter, only when the pro-
cess does not converge, and after the convergence the 
results do not depend on this parameter. The results 
do not depend on the value of ftol , neither.

Ⅵ．Conclusions and Discussion

　The following conclusions are drawn from the 
above results.
1） Almost the same values of the best set of the four 
variables are obtained for the three programs, i.e., 
the program SAMA, SAMB, and SAMC for the 
parameters which give the smallest F  value. The 
smallest F  value are 2.441651618, 2.441544520, and 
2.441021568 for the program SAMA, SAMB, and 
SAMC, respectively. The corresponding best sets 
of the three variables are the same for the three 
programs, i.e., they are as follows；Δx＝－3.046, 
Δy＝4.65, θex＝1.02. The log102α values differ slight-
ly, i.e., they are －1.85, －1.81, and －1.80, for the 
program SAMA, SAMB, and SAMC, respectively.

2） The results depend on the T 0 parameter and the 
starting set of the four variables for all the three 
programs. The above results of 1） were obtained 
for the T 0 values of 0.06, 0.008, and 0.003 for the 
program SAMA, SAMB, and SAMC, respectively. 
And the above results are obtained for the starting 
set ②. Except for the log102α variable, the best set 
of the other three variables hardly depend on the 
T 0 parameter. On the other hand, both the log102α 
and Δx  variables depend on the starting set of the 
four variables. Especially, the θex variable depend 
on neither the T 0 parameter nor the starting set of 
the four variables.

3） The result depends slightly on the parameters of 
k , K , and α for the program SAMB, though the 

on the starting set of the four variables. For example, 
the smallest F  value of 2.53555494 is obtained for the 
starting set ①. This result is obtained for the the T 0 
parameter of 0.06. The corresponding best set of the 
four variables is as follows；Δx＝－3.034, Δy＝4.67, 
θex＝1.02, and log102α＝－1.80. The above smallest F  
value is smaller than those for the T 0 parameter of 
0.05 and 0.07, as for the starting set ②.
　The following results are obtained for the program 
SAMB. The smallest F  value of 2.441544520 is ob-
tained for the following parameters；T 0＝0.008, k＝
10, K＝300, and α＝2. The corresponding best set of 
the four variables is as follows；Δx＝－3.046, Δy＝
4.65, θex＝1.02, and log102α＝－1.81. This result is ob-
tained for the starting set ②. The results depend on 
the parameter T 0. For example, the smallest F  value 
of 2.441677801 and of 2.443898039 are obtained for the 
T 0 parameter of 0.007 and 0.009, respectively. The 
corresponding best set of the four variables is as fol-
lows；Δx＝－3.046, Δy＝4.65, θex＝1.02, and log102α＝
－1.78 and Δx＝－3.045, Δy＝4.65, θex＝1.02, and 
log102α＝－1.81, respectively. The results also depend 
on the starting set of the four variables. For example, 
the smallest F  value of 2.452498782 is obtained for the 
starting set ①. This result is obtained for the follow-
ing Parameters；T 0＝0.015, k＝10, K＝300, and α＝1. 
The corresponding best set of the four variables is as 
follows；Δx＝－3.034, Δy＝4.67, θex＝1.02, and log102α
＝－1.74. This result depend slightly on the parame-
ters of k , K , and α. For example, the smallest F  value 
of 2.441544653, is obtained for the k  value of 20, where 
the other parameters are the same as those for the 
above result. The corresponding best set of the four 
variables is the same as that for the above result. The 
smallest F  value of 2.441545518, is obtained for the K  
value of 400, where the other parameters are the 
same as those for the above result. The corresponding 
best set of the four variables is as follows；Δx＝
－3.046, Δy＝4.65, θex＝1.02, and log102α＝－1.84. The 
smallest F  value of 2.441544500, is obtained for the α 
value of 1, where the other parameters are the same 
as those for the above result. This F  value is smaller 
than the above F  value. The corresponding best set of 
the four variables is the same as that for the above re-
sult. The results also depend slightly on the value of 
ftol . For example, the smallest F  value of 2.441545408 
is obtained for the ftol  value of 0.5, where the first re-
sult is obtained for the ftol  value of 1. The correspond-
ing best set of the four variables is as follows；Δx＝
－3.046, Δy＝4.65, θex＝1.02, and log102α＝－1.84.
　The following results are obtained for the program 
SAMC. The smallest F  value of 2.441021568 is ob-
tained for the following parameters；T 0＝0.003, β＝1, 
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a local minimum before converging to the global 
minimum.
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best set of the four variables hardly depends on 
the above three parameters. On the other hand, 
the results do not depend on the other parameters, 
i.e., the ε and m  parameters for the program 
SAMA, and the β and γ parameters for the pro-
gram SAMC. Taking the smallest F  value into ac-
count, the program SAMC seems to be the most 
robust programs among the three programs.

4） Compared with the program DSM and SAM, the 
three programs give the smallest F  value which 
are smaller than that for the DSM and comparable 
to that for program SAM. The three program give 
the result with parameters smaller than that for 
the program SAM.

5） In case of reasonable values of the parameters and 
the starting set of the four variables, the three pro-
grams give the four variables, Δθex, log102α, Δx , and 
Δy  within the errors of ±0.00, ±0.10, ±0.04 and 
±0.04, respectively.

6） Although the above errors are small by the stan-
dards of the curve-of-growth analysis, it is still de-
sirable to devise a algorithm to avoid converging in 
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