7

WA RF e R 43075 (2012) 77-84FH
Journal of The Open University of Japan, No. 30 (2012) pp. 77-84

Some Improvements of the Simulated Annealing Method for the
Determination of Atmospheric Parameters from the
Curve—of-Growth
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ABSTRACT

We made the three programs which modify the program of the Curve-of-Growth Analysis by the Simulated
Annealing Method made by Yoshioka (2011), according to the suggestion made by Press et al. (1992). These
programs determines the four variables, Ax, Ay, O, and log2a as the best set of the four variables from the staring
set of 5 points of the four variables, where Ax is a difference between an empirical curve-of-growth and a theoretical
curve-of-growth in the direction parallel to the abscissa and Ay is a difference of the two curves in the direction
parallel to the ordinate. The objective function is taken to be the variance of lines in the direction parallel to the
abscissa of a curve-of-growth.

The effectiveness of these programs was tested by comparing the results by these programs with those by the
program of the Downhill Simplex Method by Yoshioka and Kobayashi (2009) and by the program of the Simulated
Annealing Method by Yoshioka (2011). The data used for the comparison are those for 86 lines of Fe I of HD187203.
The following conclusions were drawn from the test.

1) Almost the same values of the best set of the four variables are obtained for the three programs.

2) The results depend on the T parameter and the starting set of the four variables for all the three programs,
where the T, parameter is the first value of the parameter which is used in the Simulated Annealing Method as
that corresponding to temperature.

3) The results depend slightly or do not depend on the other parameters. Taking the smallest value of the objective
function into account, the one of the three program seems to be the most robust programs among the three
programs.

4) Compared with the programs of the Downhill Simplex Method and the Simulated Annealing Method, the three
programs give the smallest value of the objective function which are smaller than that for the program of the
Downhill Simplex Method and comparable to that for the program of the Simulated Annealing Method. The three
program give the result with parameters smaller than that for the Simulated Annealing Method.

5) In case of reasonable values of the parameters and the starting set of the four variables, the three programs give
the four variables, A0., logw2a, Ax, and Ay within the errors of +0.00, £0.10, =0.04 and *0.04, respectively.

6) Although the above errors are small by the standards of the curve-of-growth analysis, it is still desirable to devise
a algorithm to avoid converging to a local minimum before converging to the global minimum.
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I. Introduction

A curve-of-growth analysis is one of the methods
which are used for the analysis of stellar photo-
spheres. The other method which is mainly used is a
model atmosphere analysis. Since detailed distribution
of physical quantities such as temperature and pres-
sure and so on are taken into account in a model atmo-
sphere analysis, it is called a fine analysis. It is used
when accurate observational data are available and
the nature of stellar photosphere is known to a good
approximation.

A curve-of-growth analysis is usually used when
accurate observational data are not available or there
1s not enough knowledge about the nature of a stellar
photosphere. In this analysis, one-layer approxima-
tion is made, i.e., it is assumed that there exists a spe-
cific value for a physical quantity of the photosphere
such as temperature and pressure.

A curve-of-growth is a graphical representation of
the relation between the logarithm of an equivalent
width of an absorption line, logiwI¥, and the logarithm
of a number density of absorption atoms, /N, times an
oscillator strength, £, times an statistical weight, g,
logugfN. The equivalent width of an absorption line is
the width of the rectangular profile for which the
height is equal to the continuum level near the absorp-
tion line. The equivalent width divided by the wave-
length of the absorption line, 4, W/A is often used in-
stead of W, and some multiplicative factor C, is often
added to gfN. We obtain by this method the represen-
tative quantities of a photosphere, for example, elec-
tron pressure, gas pressure, micro—turbulent velocity,
lonization temperature, and excitation temperature,
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T, together with chemical composition. This analysis
is also called coarse analysis.

In cases where accurate values for oscillater
strength are not known, the values of the abscissa of
the curve-of-growth, logwX, for a standard star are
plotted instead of logwgfN or logwgfINC. The standard
star is the star for which the physical quantities and
the chemical composition of the photosphere are al-
ready obtained. In this case, the relative values to the
standard star for the physical quantities and the
chemical composition are obtained instead of the abso-
lute values. This analysis is called a differential curve-
of-growth analysis or a differential coarse analysis.

I. Procedure by Using a Computer Done
to Date

The curve-of-growth analysis has conventionally
been done by eye measure. There is a fear that the re-
sults obtained by eye measure depend on the subjec-
tivity of an analyzer. Moreover, an objective estimate
of an error cannot been made by eye measure. The
curve-of-growth by using a computer have been ap-
plied in order to overcome the above weak points.

For example, Tech (1971)" has made a differential
curve-of-growth analysis for Ball star { Cap, using ¢
Vir as a standard star, he determined the differential
reciprocal temperature, A0 (0=5040/T.) relative
to the standard star by the minimum-sigma method,
using a computer. Powell (1971)? has made a comput-
er program for a differential curve-of-growth analy-
sis of solar-type stars.

The detailed explanations for these methods are de-
scribed in the original papers and in the paper by
Yoshioka and Kobayashi (2009)® . We describe in this
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paper an outline and strong and weak points of these
methods.

In the minimum-sigma method, several values of
Afe are chosen and the abscissa of curve-of-growth,
logX:a is taken according to the following expression,

longml:lOngs_Aeox)@, (1)
where logXs is the abscissa of a curve-of-growth of a
standard star and y: is the excitation potential of the
lower level of a absorption line. Then, a theoretical
curve-of-growth is fitted to the above empirical
curve-of-growth, and the standard deviation o of the
empirical curve-of-growth from the theoretical
curve-of-growth in the direction parallel to the ab-
scissa is calculated. By repeating the above procedure
for several values 40., a correlation between ¢ and
Af 1s obtained. The adopted value of A6 is taken to
be the value for which ¢ takes the minimum value.
Using this value of A8., the empirical curve-of-
growth is constructed by plotting for each line logiXra
along the abscissa and logwW /A along the ordinate.
This empirical curve-of-growth is used to obtain the
other representative quantities of a photosphere.

The strong points of this procedure, which is the re-
versal of the weak points of the conventional proce-
dure, are as follows : 1) Each line is treated separate-
ly and separate weight can be applied to each line ;
2) Correct excitation potential rather than mean val-
ues of excitation potential are taken into account ;
3) It gives dispassionately reproducible results and
objective estimates of error. On the other hand, this
procedure has the following weak points : 1) Great
care must be exercised in assuring that no widely dis-
cordant lines are used ; 2) Since lines on the flat part
or on the damping part of a curve-of-growth will
dominate the value of ¢ and mask the variation due to
the variation of Afe , such lines are excluded in this
analysis, which brings about ambiguity to the re-
sults ; 3) There is not a guarantee that a mean curve-
of-growth from which the value ¢ is calculated really
represents the distribution of points adequately.

According to the computer program made by Pow-
ell (1971)? the A6 value and the vertical and the hor-
izontal shifts which fit an empirical curve-of-growth
to a theoretical one are first determined, and then the
shape of the theoretical curve, i.e. the damping param-
eter of the curve is determined. In the determination
of the A8.. value and the vertical and the horizontal
shifts, only the lines which are on the linear part or on
the knee of the flat part of the curve-of-growth are
used, because the Af.. value which is determined from
these lines depends only slightly on the shape of the
theoretical curve and is not affected much by the ver-
tical shift adopted in the fitting. The determination of

the A6 value and the vertical and the horizontal
shifts is done in the following iterative way. First, the
empirical curve-of-growth is constructed adopting
the A8 value. Secondly, the empirical curve is fitted
to the theoretical curve. Thirdly, the value of logiX
corresponding to logwlW /A for the star analyzed is
read off for each absorption line from this theoretical
curve. Lastly, a new A6 value is found from a least
squares solution to the relation,

[(X]=[A] =40y, (2)
where square bracket represents the logarithmic dif-
ference of the denoted quantity between the star ana-
lyzed and the standard star ; A is the number ratio of
a relevant element and to hydrogen uncorrected for
lonization. The above iterative process is repeated un-
til a difference between successive estimate of A6 be-
comes less than the convergence tolerance (=0.005).
Adopting the values of 46, and of the vertical and the
horizontal shifts thus determined, the final value of
damping parameter of the curve-of-growth is deter-
mined by obtaining the best fit of the empirical curve
on the condition for a least-squares fit in a direction
parallel to the ordinate. If the difference between this
value of damping parameter and the previous value of
the theoretical curve which is used to determine the
Afe value and the vertical and the horizontal shifts is
greater than 1, the whole process is repeated using
the new value of damping parameter.

The strong points of this procedure are the same as
described for the minimum-sigma method. The weak
points of this procedure also are the same as the mini-
mum-sigma method, except for the third point. There
are, however, other two weak points : 1) There is a
fear of divergence in the iterative process ; 2) The de-
termination of the values of A0, and of the vertical
and the horizontal shifts is done on the condition for a
least-squares fit in a direction parallel to the abscissa,
while the determination of the value of damping pa-
rameter is done on the condition for a least-squares fit
in a direction parallel to the ordinate, which lacks con-
sistency.

Yoshioka (1987)" developed a new procedure. In
the new procedure, the determination of the four val-
ues of A6, damping parameter, and vertical and hori-
zontal shifts is done in the following way. First, the
value of damping parameter is given for a theoretical
curve-of-growth. Secondary, the theoretical curve is
fitted to the empirical curve and the values A6, and
horizontal shift are determined as least-squares solu-
tion in the direction parallel to abscissa for various val-
ues of vertical shift. Thirdly, the value of vertical shift
and the corresponding values of A8« and horizontal
shift which gives a minimum value of standard devia-
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tion, gwm, of the Al value are selected. The above
process is repeated for various values of damping pa-
rameter, and the four values of A6, damping parame-
ter, and vertical and horizontal shifts for which the
owmp value takes the minimum value are adopted as
the final values. In the above process, a gradient of the
theoretical curve-of-growth for the ordinate of a line
is taken into account as a weight for the least-squares
solution so that the lines on the linear and damping
parts of the curve-of-growth are given heavier
weight than those on the flat part of the curve, be-
cause the latter lines gives a larger difference be-
tween theoretical and empirical curve-of-growths for
the same value of error in the ordinate.

The strong points of this procedure are the same as
those of the minimum-sigma method and of the proce-
dure by Powell (1971)? . The weak points of both of
these procedures, i.e., the ambiguity in the use of lines
and the inconsistency in the use of curve-of-growth
are overcome in the procedure by Yoshioka (1987)",
because this procedure uses all the lines which belong
to those on the flat and damping parts of curve-of-
growth and the same theoretical curve-of-growth are
used for the determination of the four values.

II. Procedure by Using the Downhill
Simplex Method

In the procedure by Yoshioka (1987)", as well as in
the other procedure described above, the four values
of A8, damping parameter, and vertical and horizon-
tal shifts are determined through some stages. Yosh-
ioka (2008)° developed a new procedure using the
downbhill simplex Method. The procedure above de-
scribed can be regarded as one of optimization prob-
lem where the optimal solution is the set of four vari-
ables, A6, damping parameter, and vertical and
horizontal shifts. The objective function in our prob-
lem which is minimized by the optimal solution is se-
lected according to the criterion of agreement be-
tween the empirical curve-of-growth and the
theoretical one. The variance of absorption lines in the
curve-of-growth in the direction parallel to the ordi-
nate is selected as the objective function in the proce-
dure by Powell (1971)? . On the other hand, the vari-
ance of lines in the curve-of-growth in the direction
parallel to the abscissa is selected as the objective
function in the procedure of the minimum-sigma
method and that by Yoshioka (1987)”. Yoshioka and
Kobayashi (2009)* made a program which solves this
optimization problem by the downhill simplex method
due to Nelder and Mead (1965)” (hereafter referred
toas DSM).

The detailed explanations of DSM is described in
the paper by Yoshioka and Kobayashi (2009)”. We de-
scribe in this paper an outline of this method. In DSM,
a simplex is the geometric figure consisting in N di-
mensions (N is the number of independent variables,
and in our case, N is equal to 4) of N+1 points (or
vertices) and of all of their interconnecting line seg-
ments and of polygonal faces. In DSM, the determina-
tion of solution is done in the following iterative way.
It starts with N+ 1 points which define an initial sim-
plex. The point of a simplex where the objective func-
tion takes the largest value, which is called the high-
est point, takes a series of the following four steps :
1) a reflection away from the highest point : 2) a re-
flection and expansion away from the highest point :
3) a contraction along one dimension from the highest
point : 4) a contraction along all dimensions towards
the lowest point. In the above steps, the lowest point
is the point where the objective function takes the
smallest value. The above steps repeat and they ter-
minate when the vector distance moved in one of
those steps is fractionally smaller in magnitude than
some tolerance or, alternatively, the decrease in the
objective function is fractionally smaller than some tol-
erance.

Yoshioka and Kobayashi (2009)® obtained the four
variables using the program made by him which de-
termines these values by DSM as the values when the
above steps terminate, whose values are hereafter
called the best values. As described by Yoshioka and
Kobayashi (2009)”, it was confirmed that this pro-
gram is effective for the determination of the four val-
ues, i.e., in comparison with the program by Yoshioka
(1987)", this program reaches the best values in quite
short steps and in quite short time. On the other hand,
the following problems resulted.

1) The best values depend on the starting set of the
four values. According to the starting set of the
values, the four values of 46.,, damping parameter,
logw2a, horizontal shift, Ax, and vertical shift, Ay,
differ by £0.01, =0.09, £0.05, and *0.06, respec-
tively.

2) There are some starting sets of the four values
which does not converge to the best values in the
case where the tolerance of the decrease in the ob-
jective function for the termination of the iterative
process is smaller than some value (in this case
which is equal to 0.00007).

V. Procedure by Using the Simulated
Annealing Method

In the following paper by Yoshioka (2011)?, we
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have made the program which avoids the above prob-
lems for DSM. The objective function for the above
determination of the four variables has many local
mimima, which causes the above problems. The simu-
lated annealing method (hereafter referred to as
SAM) is a method that is suitable for minimization
problems of large scale where a desired global mini-
mum is hidden among many local minima.

The heart of SAM is an analogy with the way that
liquids freeze and crystallize. At high temperatures,
the molecules of a liquids move freely due to the ther-
mal motion. If the liquid is cooled slowly, thermal mo-
tion quietens down. The molecules form a crystal that
is ordered over the distance which is long compared
with the size of the molecules. This crystal is at the
state of minimum energy for this system. For slowly
cooled systems, nature is able to find this minimum
energy state. If it is cooled quickly, it does not reach
this state, but it ends up in a polycrystalline or amor-
phous state which has somewhat higher energy. The
essence of this process is slow cooling, which requires
ample time for redistribution of the molecules as they
lose mobility. This is the technical definition of anneal-
ing, and it is essential for ensuring that a low energy
state is achieved.

So nature’s minimization algorithms is based on the
following procedure. The following Boltzmann proba-
bility distribution,

P(E) oc exp(—E/kT) (3)
indicates that a system in thermal equilibrium at tem-
perature 7T has its energy probabilistically distributed
among all different states with energy of £ according
to the expression (3), where P is the probability of
distribution. According to the expression (3), there is
a chance of a system being in a high state. Therefore,
there is a corresponding chance for the system to get
out of a local minimum in favor of finding a better and
more global one. The system sometimes goes uphill of
energy levels as well as downhill. The lower the tem-
perature, the less likely is a significant uphill excur-
sion.

SAM is a procedure for minimization which simu-
lates the above procedure by nature. Metropolis and
coworkers first made the program of SAM for combi-
national minimization which is known as the Metropo-
lis algorism. Afterwards, the programs of SAM for
minimization with continuous variables were made by
several researchers. We adopted the procedure by
Press et al. (1992)", which uses a modification of
DSM.

In our program, a simplex of N+ 1 points moves in
the same way as in DSM, i.e., which reflects or ex-
pands or contracts. A positive, logarithmically distrib-

uted random variable which is proportional to the
temperature 7' is added to the four variables associat-
ed with every vertex of the simplex, and a similar ran-
dom variable is subtracted from the four variables of
every new point which is tried as a replacement point.
This procedure almost accepts a downhill step, but
sometimes accepts an uphill one. In the limit where T
comes close to zero, this algorithm reduces DSM and
converges to a local minimum. At a finite value of T,
the simplex expands to a scale which approximates
the size of the region that can be reached at this tem-
perature, and then it executes a stochastic Brownian
motion within that region, sampling new random
points. The efficiency with which a region is explored
is independent of the distribution of the value of the
objective function around the region sampled, where-
as the efficiency is dependent of the distribution in the
majority of the other minimization method.

There are many annealing schedules which resem-
ble the annealing by nature. Success or failure is often
determined by the choice of annealing schedule. The
schedule adopted by Yoshioka (2011)” is as follows.
[1] A starting points of a simplex in 4 dimension com-

prising of 5 points is given. Then, the F' values
corresponding to each point are calculated, and
the smallest F value, F¢, is determined, where F°
value is the value of the objective function.

[2] A series of random movements of a simplex in-
cluding contraction and expansion is executed ac-
cording to a starting 7" value. Then, the smallest
F value, Fs, is determined in the F values which
are obtained in the above series of movements.

[3] Next series of movements is executed and the
corresponding F's value is obtained. In the case
where this Fs value is smaller than that obtained
with the former step, the T value is multiplied or
divided by the SS value which is smaller than 1
and is close to 1. In the above operation, the mul-
tiplication is executed when in the former step
the multiplication is executed, and the division is
executed when in the former step the division is
executed. Then, we go to the step [2]. In the case
where this Fs value is larger than that obtained
with the former step, we go to the step [4].

[4] In the case where this Fs value is smaller than Fc
value, the Fs value of the former step is adopted.
And the corresponding four variables is adopted
as the best values. In the case where this Fs value
is larger than Fc value, the T value is multiplied
or divided by the SSS value which is much small-
er than 1. In the above operation, the multiplica-
tion is executed when in the former step the divi-
sion is executed, and the division is executed
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when in the former step the multiplication is exe-
cuted. Then we go to the step [4].

We tested our program by comparing the results of
our program with those of the program by Yoshioka
(1987)" and of the program by Yoshioka (2011)°. The
data used for the comparison is that for Fe I lines of
HD187203 which is a supergiant with F8 type. The
number of Fe I lines is equal to 86.

An absolute curve-of-growth analysis is done for
the above data with the program by Yoshioka (1987)"
and the following set of the four variables Ax, Ay, O
(instead of Afe in the case of an absolute curve-of-
growth analysis) and logw2«a is obtained ; Adx =
—3.075, Ay =4.63, #-=1.02, and logw2a = —1.85. The
corresponding F value is equal to 2.435970256.

On the other hand, we obtained by the program for
DSM by Yoshioka and Kobayashi (2008)% the follow-
ing best set of the four variables ; Ax = —3.034, Ay =
4.67, 0x=1.02, and logw2a = —1.87, for the following
starting set @, Axi= —2.90 —0.05i, Ay:=4.80—0.05i,
fei=1.15—10.051, and logiw2ai= —2.00 + 0.051, where 1=
1, -, 5, and for the tolerance of the decrease in the ob-
jective function for the termination of the iterative
process, ftol=1x10"°. The corresponding F value is
equal to 2.455285751. We obtain by the program for
SAM the following best set of the four variables ; Ax
= —3.034, Ay =4.67, 0:-=1.02, and logiw2a = —1.81,
which is obtained for the same starting set as (0. The
corresponding F' value is equal to 2.453717879. The
above results are obtained for the following parame-
ters, ftol =0.05, IITER =20, TEMPTR =0.0101, SS=
0.99, SS5=0.01, IIDUM = — 2, and NM =10, where
IITER is the maximum execution number of iteration
for the satisfaction of ftol value ; TEMPTR is the
starting 7 value ; IIDUM is a parameter for the pro-
gram generating random number ; NM is the maxi-
mum number of iteration described in the former sec-
tion. The above results depend not only on the above
parameters but also on the starting set of the four
variables. For example, the following best set of the
four variables is obtained ; Ax = —3.032, Ay =4.66, O
=1.02, and logw2a = — 1.81, for the following parame-
ters ; ftol=0.05, IITER =20, TEMPTR =0.001, SS=
0.99, SS5=0.01, IIDUM = -1, and NM =10. This re-
sult is obtained for the starting set @, Axi= —2.90 —
0.051, Ayi=4.80—0.05i1, fex=1.60 —0.20i, and logw2ai =
—2.40+0.201. The corresponding F' value is equal to
2.439946313 which is the smallest in the F' values ob-
tained by our program for SAM.

V. Modifications to the Simulated Anneal-
ing Method

We have modified the program by Yoshioka
(2011)", according to the suggestion made by Press et
al. (1992)”. Press et al. (1992)? suggests that there
are three modes which reduce the T value sufficiently
slowly. The first of the modes, which hereafter is
called the mode A, is as follows. The T value is re-
duced to (1—¢) T value after every m moves. The op-
timal ¢/m value depends on the situation where the
program is applied. The second mode, which here-
after is called the mode B, is as follows. The T value is
reduced to 7o (1 —k/K)“ after every m moves, where
To is the initial 7" value ; k is the cumulative number
of moves thus far ; K is the total number of moves
which is budgeted in advance ; a is the constant, say,
1, 2, or 4. The optimal value of « depends on the situa-
tion where the program is applied. The third mode,
which hereafter is called the mode C, is as follows. Af-
ter every m moves, the T value is reduced to T8 (F:
—F), where f is constant of order 1 ; F is the small-
est value of the objective function currently represent-
ed in the simplex ; Fy is the smallest value of the ob-
jective function ever encountered. The above
reduction is made under the restriction that 7 does
not reduce by more than some fraction y at a time.
The optimal values of f and y depend on the situation
where the program is applied.

We have made the programs which adopted the
above modes. Hereafter, we call these programs, the
program SAMA, SAMB, and SAMC, for the program
which adopt the mode A, B, and C, respectively. We
have applied the programs to the data, which were
used for the comparison by Yoshioka and Kobayashi
(2009)” and by Yoshioka (2011)” i.e. that for Fe I
lines of HD187203 which is a supergiant with F8 type.

The following results are obtained for the program
SAMA. The smallest F" value of 2.441651618 is ob-
tained for the following parameters ; To=0.06, ¢ =0.8,
and m =10. The corresponding best set of the four
variables is as follows ; Ax = —3.046, Ay =4.65, 0=
1.02, and logw2a = —1.85. This result is obtained for
the starting set @. The results do not depend on the
parameter ¢ nor m. On the other hand, they depend
on the parameter 7v. For example, the smallest F val-
ue of 2.441785862 and of 2.540081172 are obtained for
the 7o parameter of 0.05 and 0.07, respectively. The
corresponding best set of the four variables is as fol-
lows ; Ax = —3.046, Ay =4.65, 0= 1.02, and logi2a =
—1.85 and Ax= —3.044, Ay =4.66, 0=1.02, and
logw2a = —1.78, respectively. The results also depend
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on the starting set of the four variables. For example,
the smallest F' value of 2.53555494 is obtained for the
starting set . This result is obtained for the the 7%
parameter of 0.06. The corresponding best set of the
four variables is as follows ; Ax= —3.034, Ay =4.67,
f=1.02, and logw2a = —1.80. The above smallest
value is smaller than those for the 7o parameter of
0.05 and 0.07, as for the starting set ).

The following results are obtained for the program
SAMB. The smallest F" value of 2.441544520 is ob-
tained for the following parameters ; To=0.008, k =
10, K=2300, and a =2. The corresponding best set of
the four variables is as follows ; Ax= —3.046, Ay =
4.65, Bx=1.02, and logw2a = — 1.81. This result is ob-
tained for the starting set ). The results depend on
the parameter To. For example, the smallest F* value
of 2.441677801 and of 2.443898039 are obtained for the
Ty parameter of 0.007 and 0.009, respectively. The
corresponding best set of the four variables is as fol-
lows ; Ax = —3.046, Ay =4.65, O =1.02, and logi2a =
—1.78 and Ax= —3.045, Ay =4.65, 0.=1.02, and
logw2a = —1.81, respectively. The results also depend
on the starting set of the four variables. For example,
the smallest F* value of 2.452498782 is obtained for the
starting set . This result is obtained for the follow-
ing Parameters ; 70=0.015, Kk =10, K =300, and a = 1.
The corresponding best set of the four variables is as
follows ; Ax = —3.034, Ay =4.67, 6= 1.02, and log2a
= —1.74. This result depend slightly on the parame-
ters of k, K, and a. For example, the smallest F value
of 2.441544653, is obtained for the k value of 20, where
the other parameters are the same as those for the
above result. The corresponding best set of the four
variables is the same as that for the above result. The
smallest F value of 2.441545518, is obtained for the K
value of 400, where the other parameters are the
same as those for the above result. The corresponding
best set of the four variables is as follows ; 4x =
—3.046, Ay =4.65, 8=1.02, and logi2a = —1.84. The
smallest F value of 2.441544500, is obtained for the «
value of 1, where the other parameters are the same
as those for the above result. This F value is smaller
than the above F' value. The corresponding best set of
the four variables is the same as that for the above re-
sult. The results also depend slightly on the value of
ftol. For example, the smallest I value of 2.441545408
is obtained for the ftol value of 0.5, where the first re-
sult is obtained for the ftol value of 1. The correspond-
ing best set of the four variables is as follows ; Ax =
—3.046, Ay =4.65, Bx=1.02, and logi2a = —1.84.

The following results are obtained for the program
SAMC. The smallest F" value of 2.441021568 is ob-
tained for the following parameters ; 70=0.003, f =1,

y=0.8, and m =100. The corresponding best set of the
four variables is as follows ; Ax = —3.046, Ay =4.65,
f=1.02, and logw2a = —1.80. This result is obtained
for the starting set @). The results depend on the pa-
rameter To. For example, the smallest F' value of
2.441023899 and of 2.441042864 are obtained for the T
parameter of 0.002 and 0.004, respectively. The corre-
sponding best sets of the four variables are the same
as that for the above set. The results also depend on
the starting set of the four variables. For example, the
smallest F value of 2.453532079 is obtained for the
starting set . This result is obtained for the follow-
ing Parameters ; T0=0.005, f=1, y=0.8, and m =400.
The corresponding best set of the four variables is as
follows ; Ax = —3.034, Ay =4.67, 6= 1.02, and logi2a
= —1.81. The results do not depend on the parame-
ters B and y. The results depend on the m parameter.
But, they depend this parameter, only when the pro-
cess does not converge, and after the convergence the
results do not depend on this parameter. The results
do not depend on the value of ftol, neither.

VL. Conclusions and Discussion

The following conclusions are drawn from the
above results.

1) Almost the same values of the best set of the four
variables are obtained for the three programs, i.e.,
the program SAMA, SAMB, and SAMC for the
parameters which give the smallest F* value. The
smallest F value are 2.441651618, 2.441544520, and
2.441021568 for the program SAMA, SAMB, and
SAMC, respectively. The corresponding best sets
of the three variables are the same for the three
programs, i.e., they are as follows ; Ax = —3.046,
Ay =4.65, 0=1.02. The logu2a values differ slight-
ly, i.e., they are —1.85, —1.81, and —1.80, for the
program SAMA, SAMB, and SAMC, respectively.

2) The results depend on the 7% parameter and the
starting set of the four variables for all the three
programs. The above results of 1) were obtained
for the T, values of 0.06, 0.008, and 0.003 for the
program SAMA, SAMB, and SAMC, respectively.
And the above results are obtained for the starting
set 2. Except for the login2a variable, the best set
of the other three variables hardly depend on the
To parameter. On the other hand, both the logi2a
and Ax variables depend on the starting set of the
four variables. Especially, the . variable depend
on neither the 7o parameter nor the starting set of
the four variables.

3) The result depends slightly on the parameters of
k, K, and « for the program SAMB, though the
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best set of the four variables hardly depends on
the above three parameters. On the other hand,
the results do not depend on the other parameters,
i.e., the ¢ and m parameters for the program
SAMA, and the £ and y parameters for the pro-
gram SAMC. Taking the smallest /" value into ac-
count, the program SAMC seems to be the most
robust programs among the three programs.
Compared with the program DSM and SAM, the
three programs give the smallest F* value which
are smaller than that for the DSM and comparable
to that for program SAM. The three program give
the result with parameters smaller than that for
the program SAM.

In case of reasonable values of the parameters and
the starting set of the four variables, the three pro-
grams give the four variables, A6, log2a, Ax, and
Ay within the errors of =0.00, +£0.10, £0.04 and
+0.04, respectively.

Although the above errors are small by the stan-
dards of the curve-of-growth analysis, it is still de-
sirable to devise a algorithm to avoid converging in

a local minimum before converging to the global
minimum.
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