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Complex Oscillation Theory in Some Complex Domains
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ABSTRACT

We treat linear homogeneous differential equations in the complex plane with entire coefficients. We are concerned
with the complex oscillation to describe the distributions of zeros of entire solutions. The case with exponential
polynomials are mainly considered, in particular, f/ + (€7() + eT2() 4 ¢(2)) f = 0 is investigated. We give an survey
on the research of this equation, and construct examples for exceptional cases.
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1 Introduction

In the complex plane, we consider entire solutions of
linear differential equation

(1) f"+AR)f =0,

where A(z) s an entire function.

Let f(z) be an entire function. We use the standard
notations of the value distribution theory due to
Nevanlinna, see e.g., [4], [5], [7] and [10]. We de-
note by o(f) the growth order of f(z), and denote by

. log N (r, %)
A(f) = limsup B PP
r—00 gr
the exponent of convergence of the zero-sequence of
f(2). By means of Nevanlinna theory, if A(z)is a tran-
scendental entire function the non-trivial solutions are
of infinite order.
We are concerned with the problem under what
conditions solutions of (1) have many zeros, or some

solution does not have many zeros. The research in
this direction is called complex oscillation theory, see
e.g., [1], [10], [12].

To investigate the distribution of zeros of entire so-
lutions of (1), we consider their behaviors on rays
(half lines) and in sectors. Write a ray
Lo = {re?’ € C | 0 <r < oo} and a sector

S(r,a,b) ={z| |z| >r,a < argz < b}.
Leta, 8 € Candn € N. For a polynomial
Pz)=(a+1iB)z" + -+ ao,
we define for each 6
0(P,0) = acos@ — [sinb.

One of the method to show that the solution f(z) of
(1) has many zeros is the following, see, e.g., [2], [3],
[9]. First we assume that f(z) has few zeros. Using
this assumption and the lemmas in value distribution
theory, e.g., the estimates of logarithmic derivatives
[6], an auxiliary function behaves small in growth on
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some rays. By means of Phragmén-Lindelof type the-
orem, see e.g., [11], the auxiliary function behaves
small in growth on some sectors or whole complex
plane, which yields a contradition.

2 Linear differential equations with an
exponential polynomial coefficients

We recall the result due to Bank, Laine and Langley
(3]

Theorem A. Suppose that k& > 2, that P(z)is a
polynomial of degree n > 0, that R(z) is a rational
function not vanishing identically, that IT; is an entire
function of order o(II;) < n, and that 3 is a constant
with 0 < (8 < 1. Suppose further that either 3 is irra-
tional or 0 < 3 <1—+or 3=0and II; = 0. Suppose
finally that A(z) is an entire function of finite order
such that for some real 6y with (P, 6p) = 0 and some
a > 0,r9 > 0, we have

A(z) — R(2)e’® — 1, (2)ePE) | < |2

in the sector S(rg, 0y — a, 0+ «), where k+ X\ < nk if
n > land A < —kifn = 1. Then all non-trivial solu-
tion f of

y*) + A(2)y =0

satisfy A\(f) = oo

We consider the case k = 2in Theorem A. If 8 = 2,
then the assumption 8 < 1 — + of Theorem A is not
satisfied. As the authors of [3] pointed out, there is an
example which shows that A(f) = co does not hold. In
fact, the function e¢”"”’ satisfies

f// _ ((P/)262P + (P// + (P/)2)6P) f

0,

P(2)
and e® "~ has no zeros.

Theorem B. Suppose that P(z) and Q(z) are non-
constant polynomials such that deg Q < deg P and if
deg P =deg @ = n, then

P(Z):an2n+"‘+a(), Q(z):bnz”++b0

are such that b, /a,, is non-real. Let T'(z) be a polyno-
mial such that deg T+ k < k deg P and that T'(z)
vanish identically, if deg P = 1. If £ > 2, and if R(z),
S(z) are polynomials, R(z) not vanishing identically,
then all non-trivial solutions f(z) of

@) y® + (R(2)e®) + 5(2)e?® +T(2))y =0

satisfy A(f) = oc.

It is also pointed out in [3] that the case deg P =

ﬁ_

wo

deg Q and b, /a,, > 0 seems difficult to treat, for exam-
ple

3)

where A is a constant.

y//+(e4z+)\632)y:0’

3 The fz-theorem

In this section we consider the case A(z) = e’ 4
Q(z), where P(z)is a polynomial of degree p, and Q(z)
is an entire function of order less that p. In [2], the

case A(z) = e* — K, where K is a complex constant is

L
16°

"+ (- K)f

discussed. For K =
=0

possesses two linearly independent solutions f1(z) and
f2(2) such that max (A(f1), A(f2)) = 0. For all other
constant K we have

max(A(f1), A(f2)) > 1.

Further, it is proved that there exist two linearly inde-
pendent solutions fi(z) and f»(z) satisfying max
(A1), A(f2)) = 1 for all K = &, with ¢ >3 odd inte-
ger.

Theorem C. Suppose that
(4) 4+ "D+ Q) f =0

admits a non-trivial solution f(z) such that A(f) < p.
Then f(z) has no zeros, Q(z) is a polynomial and
7i / 2 1 /1
Qz) =~ (P'()* + P

Moreover, (4) admits in this case two linearly inde-
pendent zero—free solutions.

4 The two terms case

In this section, we are concerned with the second or-
der case in (2), in which we relax the condition on
T(2). In (5) below, we allow that ¢(z) could be tran-
scendental.

The authors consider the following equaton, in [9].

(5) 7+ (ePl(Z) + 2@ 4 q(2))f =0,

where ¢(z)is an entire function and P;(z), j = 1,2 are
non—constant polynomials

(6)
(7

Pl(z):<12n+__.’
Poz) = G+,

with¢; # 0,7 = 1,2 Concerning the order condition,
it is assumed that p(q) < max(n,m). In case ¢(z) is a
polynomial, (5) is included in (2). Below we suppose
that ¢(z) is transcendental. It is showed the following
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Theorem D.
(i) If n # m, then A(f) = oo for any non-trivial
solution f(z) of (5).

(i) If n=m and ¢; = (o, then A\(f) >n for any
non-trivial solution f(z) of (5).

(iii) Suppose thatn=mand § # (. If (/¢ is
non-real, then A\(f) = oo for any non-trivial solu-
tion f(z)of (5).

Further we obtained the following result [8]

Theorem E Consider the equation (5) when
n=mandp > 0.
(i) If 0 < p < 1/2, then for any nontrivial solution
of (5) we have A(f) > n.
(ii) Suppose that¢(z) = 0in (5).1f3/4 <p <1,
then for any non-trivial solution of (5) we have
A(f) = n.
Suppose that n = min (5), (6) and (7), and p is real
positive. As we mentioned above, the cases p = 1/2
and p = 3/4 are the exceptional cases.

5 Examples

We construct examples for the case p = 1/2 and
p = 3/4. We remark that ) 4 ¢P2(2) 1 ¢(2) can be
written
ePI(Z) + 6P2(2> + q(z)
= Ho(z) + Hl(z)eﬁzn + Hg(z)eczzn7

where Hj(z) # 0, j = 0,2,3 are exponential polyno-
mials of order less than n or general polynomials.
Thus we write (5) as

(8) f"+ (Ho(z)+ Hi(2)e"™" + Hy(2)e®™" ) f = 0.

Leta, b, ¢ and s be complex numbers. We set

(9) h(z) = ae® + be** + cz
and
(10) f(z) =)

Then we have

f"(z)
f(2)

= a%e® + b%5%e** 4 a(2c + 1)e?

+ bs(2¢ + 5)e** + 2abse 19?4 2

Ifa = Oorb = 0, then f(z) satisfies an equation of
the form (8).

Other possibilities when f(z) given in (10) satisfies
an equation of the form (8), we consider the cases
s=0,5s = %ands = 1below.

(i) Set s = 0. Then we see that

"= (a*e®* +a2c+1)e* + A f =0

possesses a zero free solution
(11) f(z) = ememrests,
which corresponds to the case p = %
(i) Sets = 1. Then we see that
: 1 z
(12) - (azeQZ +abe? + e+ 1es

1

1

(4a + b* + 8ac)e® + 02)f =0

possesses a zero free solution

12
(13> f(Z) _ eae“rbe? +cz.
Further, setting ¢ = —4in (12) and (13), we obtain
that

(14> fr/ o <a2622 Jrabe%z

1 1
_ 2 2 z . —
+4( a+ b%)e +16)f 0
has a solution
(15) f(z) = e beb g
Moreover, we set a = —% in (14) and (15), which
implies that
"o 1422_13§z i _
f (4be 2b€2 +16 f=0

possesses a zero free solution
f(Z) _ efébze”rbe%zf%z’
which corresponds to the case p = %.
(iii) Set s = 1. Then we see that
f// _ ((a + b)262z
+(a+b)(2c+1)e* +c*)f =0
possesses a zero free solution

f(Z) _ 6(a-‘,—b)ez-kcz7

which corresponds to the case p = %
6 Remarks

We assume that Hj(z) # 0,(; # 0, j = 1,2in (8), and
set p = (2/¢1. Theorem D states that all non-trivial so-
lutions of second order equation (8) have infinitely
many zeros if p is non real, in which the exponent of
convergences of zero sequences of them are co.

We suppose that pisreal, and assume that
0 < p < 1 without loss of generalities. Examples in
Section 4 show that there exist non-trivial zero free
solutions when p = 1/2 and p = 3/4. Theorem E
states that any non-trivial solution f(z) of (8) satisfies
AMf) = nif0 < p < 1/2. Itis also mentioned that when
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q(z) = 0 any non-trivial solution f(z) of (8) satisfies
Af) > nif3/4 <p < 1.

Below we state open questions in connecting with
these results. (i) We should consider the problem
whether we can remove the condition ¢(z) = 0 in the
second assertion of of Theorem E. (ii) It is a most cu-
rious problem what happens when 1/2 < p < 3/4. (iii)
We are also interested in the problem whether it is
possible to show A(f) = oo in stead of A(f) > n when
0<p<l/20r3/di<p<l
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