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Interrelations between difference equations and
differential equations in complex domains

Katsuya IsHIZAKI
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ABSTRACT

We are concerned with differential equations and discrete functional equations in complex domains. Considering
the existence of transcendental meromorphic solutions, we discuss interrelations between difference equations and
differential equations mainly in the whole complex plane. We also treat linear difference equations of second order in
connection with difference Riccati equations. Some examples are given.
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1 Introduction

The theory of complex differential equations and the
theory of complex discrete functional equations have
been developed by giving impacts and influences each
other with the remarkable developments of complex
analysis. In fact, researches of algebraic differential
equations and complex oscillation theory have been
evolved by virtues of the Nevanlinna theory and the
Wiman-Valiron theory, see e.g., [16], [19]. The con-
siderations of the counterparts of these researches
have required the constructions of discrete version of
the value distribution theory of meromorphic func-
tions. Here ‘meromorphic’ means that ‘meromorphic
whole complex plane’. On the other hand, the results
of the discrete version of value distribution theory
have been supported and corroborated by the discrete
functional equations, for examples, difference equa-
tions. The properties of some complex analysis are in-

dicated by the specific functions produced from the
functional equations. During in the last decay, the
progress of difference analogues of the Nevanlinna
theory have advanced, e.g., [4], [8], [9], and the
Wiman-Valiron theory has been generalized for hy-
perbolic domains, e.g., [2]. The difference analogues
of the Wiman-Valiron theory were constructed and
have been applied to built the counterparts of the the-
ory of linear differential equations in the complex
plane, e.g., [5], [15].

The Malmquist-Yosida theorem in the theory of
complex differential equation states that

oy

where P(z, w) is a polynomial in w with rational coeffi-
cients, has no transcendental meromorphic solution
when deg,, P(z, w) >3, [20], [27]. The corresponding
difference equation to (1) seems to be

2)

w' = P(z,w),

w(z +1) = P(z,w),
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where P(z, w) is a polynomial in w with rational coeffi-
cients similar to (1). The counterpart of the Malm-
quist-Yosida theorem was proved by Yanagihara
[26]. The difference equation (2) has no transcenden-
tal meromorphic solution of finite order when deg,, P
(z, w) >2. The differential equation (1) of degree
deg,, P(z, w) =2 is called Riccati equation, which has a
transcendental meromorphic solution under some con-
ditions. Riccati equation has been investigated in the
complex plane from many aspects, e.g., [1], [11],
[19], [24]. By virtue of the Yanagihara theorem, a re-
lating difference equation to Riccati equation may be
the difference equation (2) of degree deg,, P(z, w) =
1. Considering the analytic properties of meromorphic
solutions, the polynomial in (2) could be generalized
to a rational function in w of degree 1 with meromor-
phic coefficients, namely

a(z) + b(z)w
c(z) +d(z)w’
a(z)d(z) = b(2)c(z) # 0,
where a(z), b(2), ¢(2) and d(2) are meromorphic

functions. By suitable Mébius transformation f(z) =
M(z, w(z)) with meromorphic coeffcients, (3) is re-

(3) w(z+1)=

duced to a linear difference equation of first order, a
difference equation f(z+1) f(2) =a(z), or

A(2) + f(2)

@ = 7(z)

flz+1) =
where a(z) Z0 and A(z) Z — 1 are meromorphic func-
tions concretely represented by a(z), b(z), ¢(z) and d
(z). We call the difference equation (4) the difference
Riccati equation in this paper. Recent results on (4)
are found in, e.g., [3], [12], [13].

2 Continuous limit and gauge transformation

Concerning the interrelations between solutions of dif-
ference equations and solutions of differential equa-
tion, we first discuss the bilinear method to derive a
difference equation wo=wo(z, f(2), f(z+1),..,.f(z+
k)) =0 from an algebraic differential equation w1 = w;
(z f(2), f' (2),..., %) (2)) =0, where k is a positive in-
teger, see e.g., [6]. Set f(z) =u(2)/v(2) in w1=0.Itis
known that any algebraic differential equation is
gauge invariant. In other words, for any h(z), @(z) =
u(z)h(z) and 9(2) =v(2)h(2) also satisfy the same
differential equation in place of u(z) and v(z) respec-
tively. We note that in order to propose wo=0 if we
simply change f(z+34), =1, 2,..., k in place of 9, j=
1, 2,..., kin w1 =0, it does not always work well. To to
this, we may choose a difference equation having the
property of gauge invariant.

wo

On the other hand, we have a method “continuous lim-
it” to derive a differential equation from a difference
equation, which has been contributed to Painlevé anal-
ysis, e.g., [7, §501, [21], [22], [23]. A rough sketch
of this idea is the following. Let k be a positive integer,
and ¢ be a complex number. We set a pair of relations
ulz, t,¢)=0and v (f(2), w(t ¢), ¢) =0. According to
these relations, we transform a difference equation
Qolz, f(2), f(z+1),..., f(z+k)) =0 to a certain differ-
ence equation Q1 w(t, ¢),w(t+e, €),..., w(t+ ke,
¢)) =0. Letting ¢e—0, with some conditions on coeffi-
cients of Q1, we derive a differential equation Q2 (¢, w
t,0),w' (& 0),w” (t0),.,wk (t0)) =0.

Example 2.1 We consider an algebraic differential
equation
(5) (w')? = A(z)(w” = 1),

where A(z) is a meromorphic function. The author
treated (5) paying attention to two distinct transcen-
dental meromorphic solutions wj (z) and ws(z) when
A(z) is a rational function in [14]. It was shown that
w1 (2) and ws (2) satisfy an algebraic relation

w% + 2cwiws +w§ =1- 02,

where c Is a constant. It is a curious problem whether
the difference analogue of this property holds or not.
Before we consider this problem, we should obtain the
corresponding difference equation to (5). Here we
choose a difference equation

(6) (AF(2))" = A=) (f(2)f(z +1) = 1),

where A f(z) =f(z+1) — f(2), and show that (6) is
gauge invariant below. Moreover, we confirm that (6)
reduces to (5) by continuous limit.

Set f(z) =u(z)/v(z) in (6). Then we have

(u(z + 1v(z) — u(z)v(z + 1))2
= A(2) (u(z)u(z+1)v(z)v(z+1)—v(z)2v(z+1)2>.

(7

Let h(2) Z0 be an arbitrary function. Further we set
4(2) =u(z)h(z) and 9(2) =v(z)h(2) in (7). Multiply-
ing h(2)" both side, we see that @(z) and ¥(z) satisfy
(7), which implies that (6) is gauge invariant.

Setting t=¢z and f(2) =w(t, &) in (6) and &4 (¢, ¢)
in place of A(z), we show that (6) reduces to (5).

Since f(z+1) =w(e(z+1),¢e) =wlez+e, &) =w(t+
¢, €), we have

(w(t +¢, E) - w(ta 5))2
= At e)(w(t,e)w(t +¢,€) — 1).

(8)
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Assume that g)n A(t, &) =A(t,0) exists. Letting e—0
in (8), we see that w(t, 0) =£igr})w(t, e), if exists, satis-
fies the differential equation

(9) w'(t)? = A(t)(w(t)* - 1),

with A (t) =A (¢, 0), which is of the form (5). The
problem whether distinct meromorphic solutions fi
(2) and f2(2) to (6) have some algebraic relation is
most generally open.

3 Relations between linear difference
equations and difference Riccati equations

Let n>2 be an integer. We denote by ¢(f1, fo, ..., fn)
(2) the Casoratian of functions f1(2), f2(2), ..., fn(2).

C(f1, fas -5 fa)(2)
fi(2) f2(2) fn(2)
Afi(2) Afy(2) Afn(z)
—| AN*fi(2) A fo(z) D2 fn(2)
AVf(s) APV f() e AU (2)
fi(2) f2(2) fa(2)
f1(z+1) fg(ZJrl) f,L(Z+1)
—| filz+2) fo(z+2) fal(z +2)
filz —&—.n— 1) fa(z —|—.n— 1) fulz +.n— 1)

We consider a linear difference equation of second or-
der ¢ (u, u1, u2) (z) =0, i.e.,

(10) az(2)u(z + 2) + a1 (2)u(z + 1)
+ap(z)u(z) =0

with

(1) a2(2) = €(ur, u2)(2),

ug(z)
ug(z 4+ 2)|’

uy(2)

(12) ar(z) = - ui(z +2)

(13) ag(z) = €(Aug, Aug)(2).

Clearly, (10) possesses solutions u1(z) and uz(z). As-
sume az(2) Z0 and set u(z) =b(2)y(2) in (10). Using
ANy(2) =y(2+2) = 2y(2+1) +y(2), we obtain a linear
difference equation

a0 o+ (S ) e =0

if b(z) satisfies a difference equation

(15) bz +1) = —%%b(z).

If b(2) Z0 and ¢ (yL, 2) (2) Z0, where y;(2) =u;(2) /b

(z), j=1, 2, then any solution y(z) of (14) can be rep-
resented

(16) y(2) = Q1(2)y1(2) + Q2(2)y2(2),

where Q;(2), j=1, 2 are periodic function of period 1.
It is known that f(z) = — Ay(2) /y(2) solves a differ-
ence Riccati equation (4) with

ap(z) b(z)

a7 Alz) = az(z) b(z + 2)

We note that by (15), A(z) in (10) can be written as

_aoaaz-1)
W A Gue- "
In fact, by (15),
__Ay(z) __ Aw(z)/b(2))
L S BT ) e
o b(x) u(z+1)
b(z+1) wu(z)
B az(z— 1) u(z+1)
=1 2aj(z— 1) wu(z)
Remark 3.1 It is known that if a;(z—1)/a2(z—1) is

a meromorphic function of finite order p then there
exists a meromorphic solution to (15) of order at most
p+1, see [25, Page 30, Theorem 5]. In case a1(z—1)/
az(z—1) is a rational function, we obtain a meromor-
phic solution of (15) concretely by a formula, e.g., [17,
Page 48], [18, Pages 115-116].

Example 3.1 We consider the Euler I"-function I"
(2).Set y(2) =1/T (2). It is known that I" (z) and y(z)
satisfy difference equations of first order ' (z+1) = 2T
(2) and y(2+1) =y(2) /2, respectively. We set u; (z) =
I'(2) and ug(z) =y(z) in (11), (12), and (13). Then

ol = (7= + D) T

) == (g~ 6+ 1) TG

1
0ale) = (1= 2) TG (o)
Since T'(2+2) =2(z+1)T'(2) and y(z+2) =y (2)/2(z
+1).

Putting u1(z) =T (2) and u2(z) =y(2) in (19) re-
spectively, we see that the rational functions

24 =228 2241
(22— z+1)(22-2-1)

fi(z) =—

and

24— 28— 22+ 421
(22— 2z+1)(z2-2-1)

fa(z) =
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satisfy the difference Riccati equation (4) with
Az) =
28-625+1524-22241
(2242+1)(2242-1) (22— 2+1) (22— 2—1)

General solutions f(z) to (4) with A(z) above can be
written as

Q1(2)2°(2) + Q2(2)
2(Q1(2)T'(2) + Q2(2))’

f(z) =1+ R(2)

with

-22%(z - 2)

R(z) = (22-2+41)(22-2-1)

where Q;(2), j=1, 2 are periodic functions of period 1.
This shows that the difference Riccati equation (4)
possesses infinitely many transcendental meromor-
phic solutions and two distinct rational solutions f1 (z)
and f2(z). By means of Proposition 2.1 in [12], we see
that there is no rational solution other than fi(z) and
f2(2) in this case.
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